

0

2019

Arduino Starter Kit
Arduino IDE Programming Tutorials

1

C programming

1. Hello world 2
2. LED Twinkle 7
3. Analog value 10
4. Advertising lights 14
5. Traffic lights 18
6. Key control 22
7. Answering machine 26
8. Buzzer 30
 8.1 Active buzzer 30
 8.2 Passive buzzer 34
9. PWM dimming 40
10. Light controlled sound 44
11. Sensible heat light 48
12. 8x8 lattice dot matrix 52
13. Tilt switch 57
14. Flame alarm 61

15. Nixie tube 65
16. Four bit nixie tube 72
17. 74HC595 78
18. Servo control 83
19. IR control 88
20. 1602 display 97

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

2

1-Hello World!
The purpose of the experiment:

This course is an experiment that allows Arduino and PC to communicate. The
experimental results is to let Arduino say "Hello World!"

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

Experimental code analysis:

int val; //Defining variable val
int ledpin=13; //Defining the digital port 13

void setup()

{

 Serial.begin(9600); //The baud rate is 9600, which is consistent with software settings.
When accessing specific devices (such as Bluetooth), we also have to agree with the
baud rate of other devices.
 pinMode(ledpin,OUTPUT); //Set the number of 13 ports as output interfaces, and the
I/O ports we use on Arduino have similar definitions.
}

void loop()

{

 val=Serial.read(); //Read the instructions or characters sent to the Arduino by the PC
machine, and assign the instruction or character to val
 if(val=='R') //Determine whether the received instruction or character is "R"

 { //If the "R" character is received

 digitalWrite(ledpin,HIGH); //Light the number of 13 ports of LED

 delay(500);
 digitalWrite(ledpin,LOW); //Extinguish the number of 13 ports of LED

 delay(500);

 Serial.println("Hello World!"); //Dsiplay “Hello World！”

 }

}

Experimental steps:

1. We need to open the code of this experiment: code-Hello_world.ino, click“√”under
the menu bar to compile the code, and wait for the word "Done compiling" in the lower
right corner,as shown in the figure below.

3

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】--- selecting

the port that the serial number displayed by the device manager just now, as shown in
the figure below.

4

3. After the selection is completed, you need to click “→”under the menu bar to upload
the code to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

4. We need to turn on the serial port monitor in the upper right corner of the Arduino
IDE, and a serial port printing box of the Arduino port will appear. The baud rate is set to
9600 in the lower right corner, as shown in the figure below.

5

5.According to the code, we should enter "R" in the sending box, as shown in the figure
below.

6.After clicking “send” on the upper right corner , we can receive the Hello World! in the
receiving box below, as shown in the figure below.

6

7

2-Led Twinkle
The purpose of the experiment:

This course is to use the I/O port on the Arduino UNO board and an external LED
light to complete the experiment. The experiment is to make the LED light to
twinkle, lights up for 1 second and turns off for 1 second.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

LED*1（Color random）

220Ω Resistor *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int ledPin = 10; //Defining the digital port 10

void setup()

{

 pinMode(ledPin, OUTPUT); //Defining the light port for the output port
}

void loop()

{

 digitalWrite(ledPin, HIGH); //Lights up

 delay(1000); //delay 1 second

 digitalWrite(ledPin, LOW); //Lights out
 delay(1000); //delay 1 second

}

Experimental steps:

8

1. We need to open the code of this experiment: code-Led_Twinkle.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】--- selecting

the port that the serial number displayed by the device manager just now, as shown in
the figure below.

9

3.After the selection is completed, you need to click “ ”under the menu bar to upload
the code to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

4.After the code is uploaded, we can see LED light twinkle every second, as shown in
the picture below.

10

3-Analog value
The purpose of the experiment:

In this course, we learn how to use of simulate I/O interface by combining adjustable
resistor. Arduino is equipped with 6 analog interfaces, port 0~part 5. They can be
reused. In addition to the analog interface function, these 6 interfaces can be used as
digital interfaces, No 14-19.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

Adjustable resistor *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int potpin=A0; //Defining the analog port A0

int ledpin=13; //Defining the led port 13

int val=0; //Declarations of temporary variables

void setup()

{

 pinMode(ledpin,OUTPUT); //Defining the light port for the output port
 Serial.begin(9600); //The baud rate is 9600

}

void loop()

{

 val=analogRead(potpin); //Reading the voltage value of the A0 port and assign it to val

11

 Serial.println(val); //Sending Val value by serial port
}

Experimental steps:

1. We need to open the code of this experiment: code-Analog_value.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below.

12

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

4.After the code is uploaded. You need to open the serial port monitor on the top right
corner of Arduino IDE, A serial port of Arduino port will appear, as shown in the
following figure.When we rotate the adjustable resistor, we can see that the data printed
in the serial port monitor will change accordingly, as shown in the following figure.

13

14

4- Advertisement lights
The purpose of the experiment:

This course is to use the led lights programming to achieve the effect of the simulated
advertising lights.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

LED*6（Color random）

220Ω Resistor *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int BASE = 2 ; //The first LED I/O port
int NUM = 6; //The total number of LED

int i=0;
void setup()

{

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 pinMode(i, OUTPUT); //Defining the digital I/O port for output port
 }

}

15

void loop()

{

 for (i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, LOW); //Set the number I/O port to be "LOW", that is, the order
is extinguished.
 delay(200);
 }

 for (i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, HIGH); //Set the number I/O foot to be "HIGH", that is, the order is lit.
 delay(200);
 }
}
Experimental steps:

1. We need to open the code of this experiment: code-Advertisement_lights.ino,
click“√” under the menu bar to compile the code, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below.

16

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

17

4.After the code is uploaded,we can see that 6 LED lights are turned on successively
and then turned off successively, as shown in the figure below.

18

5- Traffic lights
The purpose of the experiment:

This course uses led lights programming to realize the effect of simulated traffic lights.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

LED*3（Color random）

220Ω Resistor *3

Breadboard *1

dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int redled =10; //Defining the digital port 10

int yellowled =7; //Defining the digital port 7

int greenled =4; //Defining the digital port 4

void setup()

{

 pinMode(redled, OUTPUT);//Defining the red light port for the output port
 pinMode(yellowled, OUTPUT); //Defining the yellow light port for the output port
 pinMode(greenled, OUTPUT); //Defining the green light port for the output port
}

void loop()

19

{

 digitalWrite(redled, HIGH);//Light up red light
 delay(1000);
 digitalWrite(redled, LOW); //Extinguish red light
 digitalWrite(yellowled, HIGH);//Light up yellow light
 delay(200);
 digitalWrite(yellowled, LOW);//Extinguish yellow light
 digitalWrite(greenled, HIGH);//Light up green light
 delay(1000);
 digitalWrite(greenled, LOW);//Extinguish green light
}

Experimental steps:

1. We need to open the code of this experiment: code-Traffic_lights.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below.

20

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

21

4.After the code is uploaded, we can see that the red light is on for 1 second, the yellow
light is on for 0.2 seconds, and the green light is on for 1 second, as shown in the figure
below.

22

6- Key control
The purpose of the experiment:

In this course, we will learn how to use the input function of I/O port of Arduino，that is,

to read the output value of the external device. We use a key and a LED light to
complete a combination of the input and output experiments.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

LED*1（Color random）

220Ω Resistor *1

10kΩ Resistor *1

Key switch *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int ledpin=11;//Defining the digital port 11

int inpin=7;//Defining the digital port 7

int val;//Defining variable

void setup()

{

 pinMode(ledpin,OUTPUT);//Defining the light port for the output port

23

 pinMode(inpin,INPUT);//Defining the key port for the input port
}

void loop()

{

 val=digitalRead(inpin);//Read the value of the 7 port level to the val
 if(val==LOW)//Check whether the button is pressed or not. When the button is
pressed, the light will turn on.
 digitalWrite(ledpin,LOW);
 else

 digitalWrite(ledpin,HIGH);
}

Experimental steps:

1. We need to open the code of this experiment: code-Key control.ino, click“√” under the
menu bar to compile the code, and wait for the word "Done compiling " in the lower right
corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. for example:COM6,as shown in the following figure.

24

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

25

4. After the code is uploaded, when the button is pressed, the LED light will be on, and
the LED light will be off when the button is released, as shown in the figure below.

26

7- Answering machine
The purpose of the experiment:

This experiment is to extend the experiment of button control LED lights in
the previous class into 3 buttons corresponding to 3 LED lights, which requires 6 digital
I/O interfaces of Arduino.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

LED*3（Color random）

220Ω Resistor *3

10kΩ Resistor *3

Key switch *3

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int redled=10; //set IO 10 to red LED

int yellowled=9; //set IO 10 to yellow LED

int greenled=8; //set IO 10 to green LED

int redpin=7; //red key pin IO 7

int yellowpin=6; //yellow key pin IO 6

int greenpin=5; //green key pin IO 5

27

int red; //Declarations of variables

int yellow; //Declarations of variables

int green; //Declarations of variables

void setup()

{

 pinMode(redled,OUTPUT); //set as output
 pinMode(yellowled,OUTPUT); //set as output
 pinMode(greenled,OUTPUT); //set as output
 pinMode(redpin,INPUT); //set as input
 pinMode(yellowpin,INPUT); //set as input
 pinMode(greenpin,INPUT); //set as input
}

void loop()

{

 red=digitalRead(redpin);//Reading key state

 if(red==LOW) //Key state is LOW

 { digitalWrite(redled,LOW);}//LED turn off
 else //Key state is HIGH

 { digitalWrite(redled,HIGH);}//LED turn on

 yellow=digitalRead(yellowpin);
 if(yellow==LOW)

 { digitalWrite(yellowled,LOW);}

 else

 { digitalWrite(yellowled,HIGH);}

 green=digitalRead(greenpin);
 if(green==LOW)

 { digitalWrite(greenled,LOW);}

 else

 { digitalWrite(greenled,HIGH);}

}

Experimental steps:

1. We need to open the code of this experiment: code-Answering machine.ino,
click“√” under the menu bar to compile the code, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

28

2.In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. for example:COM6,as shown in the following figure.

3.After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

29

4.After the code is uploaded, when different buttons are pressed, the LED lights of
different colors will be turned on and the LED lights will be extinguished when the button
is released, as shown in the figure below.

30

8.1- Active buzzer
The purpose of the experiment:

In this course, we need to use active buzzer to make an experiment to make the circuit
sound.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω Resistor *1

Active buzzer *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Note: The active buzzer has positive and negative electrode. The actual object
diagram below shows that the buzzer has positive and negative marks.

 Experimental code analysis:

int buzzer=8; //Defining the digital port 8 to control the buzzer

int i = 0;
void setup()

31

{

pinMode(buzzer,OUTPUT); //Defining the buzzer port for the output port
}

void loop()

{

 for(i=0;i<80;i++) //Output a frequency of sound

 {

 digitalWrite(buzzer,HIGH); //Sound

 delay(1);
 digitalWrite(buzzer,LOW); //Unsound

 delay(1);
 }

 for(i=0;i<100;i++) //Output another frequency of sound

 {

 digitalWrite(buzzer,HIGH); //Sound

 delay(2);
 digitalWrite(buzzer,LOW); //Unsound

 delay(2);
 }

}

Experimental steps:

1. We need to open the code of this experiment: code-Active_buzzer.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

2.In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

32

3.After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

33

4.After the code is uploaded, we can hear the buzzer making two different frequencies
in succession, as shown in the following figure.

34

8.2- Passive buzzer
The purpose of the experiment:

In this course, we need to use passive buzzer to make an experiment to make the
circuit sound.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω Resistor *1

Passive buzzer *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Note: The passive buzzer has positive and negative electrode. The actual object
diagram below shows that the buzzer has positive and negative marks.

Experimental code analysis:

#define BL1 248

#define BL2 278

35

#define BL3 294

#define BL4 330

#define BL5 371

#define BL6 416

#define BL7 467

#define B1 495

#define B2 556

#define B3 624

#define B4 661

#define B5 742

#define B6 833

#define B7 935

#define BH1 990

#define BH2 1112

#define BH3 1178

#define BH4 1322

#define BH5 1484

#define BH6 1665

#define BH7 1869

#define NTC1 262

#define NTC2 294

#define NTC3 330

#define NTC4 350

#define NTC5 393

#define NTC6 441

#define NTC7 495

#define NTCL1 131

#define NTCL2 147

#define NTCL3 165

#define NTCL4 175

#define NTCL5 196

#define NTCL6 221

#define NTCL7 248

#define NTCH1 525

#define NTCH2 589

#define NTCH3 661

#define NTCH4 700

#define NTCH5 786

#define NTCH6 882

#define NTCH7 990

#define NTD0 -1

#define NTD1 294

#define NTD2 330

#define NTD3 350

#define NTD4 393

#define NTD5 441

36

#define NTD6 495

#define NTD7 556

#define NTDL1 147

#define NTDL2 165

#define NTDL3 175

#define NTDL4 196

#define NTDL5 221

#define NTDL6 248

#define NTDL7 278

#define NTDH1 589

#define NTDH2 661

#define NTDH3 700

#define NTDH4 786

#define NTDH5 882

#define NTDH6 990

#define NTDH7 1112

#define NTE1 330

#define NTE2 350

#define NTE3 393

#define NTE4 441

#define NTE5 495

#define NTE6 556

#define NTE7 624

#define NTEL1 165

#define NTEL2 175

#define NTEL3 196

#define NTEL4 221

#define NTEL5 248

#define NTEL6 278

#define NTEL7 312

#define NTEH1 661

#define NTEH2 700

#define NTEH3 786

#define NTEH4 882

#define NTEH5 990

#define NTEH6 1112

#define NTEH7 1248

int speakerPin= 8;
int buzzer=8;//Defining the digital port 8 to control the buzzer

int i = 0;
/*YeZi C*/
int tune[]= //List the frequencies according to the simple spectrum

{

NTC3, NTC5, NTC5, NTC3, NTC6, NTC6, NTC7, NTC6, NTC6, NTC6, NTC5, NTCH1,
NTCH1, NTCH1, NTCH1, NTC6,NTCH1, NTC6, NTC5,NTC3, NTC5, NTC5, NTC5,
NTC3, NTC6, NTC6, NTC7, NTC6, NTC6, NTC6, NTC5, NTCH1, NTCH1,

37

NTCH1,NTCH1, NTC6, NTC6, NTCH1,NTCH2,NTCH5, NTCH5, NTCH5,
NTCH5,NTCH5, NTCH3, NTCH2, NTCH1, NTCH1, NTC6, NTCH1, NTC6,
NTCH1,NTCH2,NTCH2, NTCH2, NTCH2,NTCH2, NTCH1, NTCH3, NTCH2,
NTCH2,NTCH3, NTCH3, NTCH3, NTCH3, NTCH2, NTCH2, NTCH1, NTCH1, NTCH1,
NTCH2, NTCH1, NTC6, NTC5, NTC5,NTC5, NTC5, NTC6, NTC5,NTCH2,
NTCH3,NTCH1,
};
float durt[]= //List the tempo according to the simple spectrum

{

0.5, 0.5, 1.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2, 0.5, 0.5,
1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1, 0.5, 0.5,0.5, 0.5, 0.5, 0.5, 2,0.5, 1, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 1, 1, 0.5, 0.5, 0.5, 1, 0.25, 0.5, 0.5, 0.5, 0.5, 1, 0.25, 2,0.5, 1, 0.5, 0.5,
0.5, 1, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1,0.5, 0.5, 0.5, 0.5, 0.5, 2,
};
void PlayTest()

{

 int length = sizeof(tune)/sizeof(tune[0]); //Calculate length

 for(int x=0; x < length;x++)

 {

 tone(speakerPin,tune[x]);
 delay(500*durt[x]); //This is used to adjust the time delay according to the beat,500

this index can be adjusted by yourself. In this music, I find that 500 is more suitable.。

 noTone(speakerPin);
 }

}

void setup()

{

pinMode(buzzer,OUTPUT); //Defining the buzzer port for the output port
}

void loop()

{

 PlayTest();
}

Experimental steps:
1.We need to open the code of this experiment: code-Passive_buzzer.ino,
click“√” under the menu bar to compile the code, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

38

2.In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

3.After the selection is completed, you need to click “ ”under the menu bar to upload
the code to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

39

4.After the code is uploaded, We can hear the buzzer will sing according to the score
written in the program, as shown in the following figure.

40

9- PWM dimming
The purpose of the experiment:

Arduino controller has six PWM（Pulse Width Modulation）interface，which are digital

interface 3, 5, 6, 9, 10, 11. In this course, we input the different analog voltage
by adjusting the adjustable resistor, and the microcontroller recognizes the
corresponding proportional PWM wave to control the brightness of the LED lights.

Introduction of PWM:

PWM is used in many places, dimmable lighting, motor speed regulation, sound
production and so on.

Its three basic parameters:

1. Pulse width

2. The pulse period (the reciprocal of the number of pulses in one second).

3. Voltage height (for example: 0V-5V)

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω Resistor *1

Adjustable resistor *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

41

Experimental code analysis:

int potpin=A0; //Defining the analog port A0

int ledpin=13; //Defining the led port 13

int val=0; //Declarations of temporary variables

void setup()

{

 pinMode(ledpin,OUTPUT); //Defining the light port for the output port
 Serial.begin(9600); //The baud rate is 9600

}

void loop()

{

 val=analogRead(potpin); //Read the voltage value of the A0 port and assign it to val
 Serial.println(val); //Sending Val value by serial port
}
Experimental steps:

1.We need to open the program of this experiment: code-PWM-dimming.ino,
click“√” under the menu bar to compile the program, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

2.In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

42

3.After the selection is completed, you need to click “ ”under the menu bar to upload
the program to the Arduino UNO board. When the word “Done uploading” appears in
the lower left corner, the program has been successfully uploaded to the Arduino UNO
board, as shown in the figure below.

43

4.After the program is uploaded. When we adjust the adjustable resistance, we will see
the change in the brightness of the LED. If you turn on the serial port monitor at the
same time, you can also see the change of the printed values.

44

10- Light controlled sound
The purpose of the experiment:

The purpose of this experiment is to make you learn how to use a special resistor --
photosensitive resistor. This experimental result is: when the photosensitive resistance
is connected in the circuit, the buzzer will make a small sound in the absence of light. In
the case of illumination, the resistance of the photosensitive resistor will decrease,
which causing the voltage across the buzzer to increase and the buzzer sound to
become louder.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

Photosensitive resistor *1

Active buzzer *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram:

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

int buzzer=6;//Defining the digital IO port6 to control the buzzer

int i = 0;
void setup()

{

pinMode(buzzer,OUTPUT);//Defining the led port for the output port
}

void loop()

{

45

 for(i=0;i<80;i++)//Output a frequency of sound

 {

 digitalWrite(buzzer,HIGH);//sound

 delay(1);
 digitalWrite(buzzer,LOW);//unsound

 delay(1);
 }

 for(i=0;i<100;i++)//Output another frequency of sound

 {

 digitalWrite(buzzer,HIGH);//sound

 delay(2);
 digitalWrite(buzzer,LOW);//unsound

 delay(2);
 }

}

Experimental steps:

1.We need to open the code of this experiment:code-Light_controlled_sound.ino,
click“√” under the menu bar to compile the code, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

2.In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

46

3.After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

47

4.We need to give the photosensitive resistor different intensity of illumination, and as
the light intensity changes, the size of the sound of the buzzer will also change. As
shown in the figure below.

48

11- Sensible heat light
The purpose of the experiment:

In this course, we use sensor -- thermistor to control PWM by controlling the change of
thermistor resistance value, so as to control the brightness of LED light.

Introduction of thermistor:

Thermistor is a kind of sensitive element, which can be divided into positive temperature
coefficient thermistor (PTC) and negative temperature coefficient thermistor (NTC)
according to different temperature coefficient. The typical characteristic of thermistors is
that they are sensitive to temperature and show different resistance values at different
temperatures. Resistance value of positive temperature coefficient (PTC) thermistor will
become higher when the higher the temperature, Resistance value of negative
temperature coefficient (NTC) thermistor will become lower when the higher the
temperature. They are both semiconductor devices.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

Negative temperature coefficient Thermistor*1

220Ω resistor *1

10kΩ resistor *1

LED *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

49

Experimental code analysis:

int potpin=0; //Defining the analog port A0

int ledpin=11; //Defining the digital port 11(for output PWM)

int val=0; //Defining Variable val
void setup()

{

pinMode(ledpin,OUTPUT); //Defining the port11 for the output port
Serial.begin(9600); //The baud rate is 9600

}

void loop()

{

val=analogRead(potpin); //Reading the voltage value of the A0 port and assign it to val
val = 245- val;
 if(val < 0)

 val = 0;
Serial.println(val);
analogWrite(ledpin,val); //PWM output is used to drive LED

delay(100);
}
Experimental steps:

1.We need to open the code of this experiment: code-Sensible_heat_light.ino,
click“√” under the menu bar to compile the code, and wait for the word "Done
compiling " in the lower right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

50

3.After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

51

4. After the code is uploaded. When we do not heat the thermistor, the LED extinguish.
When we heat the thermistor, the LED will bright, and the brightness of the LED will
change with the change of the heat of the thermistor. At the same time, we can open
the serial port monitor, and we can also see the change of the voltage value at both
ends of the LED, as shown in the following figure.

52

12- 8x8 dot matrix
The purpose of the experiment:

In this course, we will learn how to use 8x8 dot matrix. The experimental effect is to light
the LED on the 8x8 dot matrix.

Introduction of 8x8 dot matrix:

The 8x8 lattice is composed of 64 LED, and each LED is placed at the intersection of
line and line. When one line is high level(1) and a column is low level(0), the
corresponding diode will be bright. If you want to light up the first line, the ninth pin need
to high level, and (13, 3, 4, 10, 6, 11, 15, 16) these pins are low level. If you want to light
up the first column, the thirteenth pin need low level, and (9, 14, 8, 12, 1, 7, 2, 5) these
pins are low level.

Pin identification as shown in the two figures below.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω resistor *8

8x8 dot matrixLED*1

Breadboard *1

dupont line *1bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

53

Experimental code analysis:

const int row1 = 2; // Arduino Pin2 connect pin9 of the dot matrix
const int row2 = 3; // Arduino Pin3 connect pin14 of the dot matrix
const int row3 = 4; // Arduino Pin4 connect pin8 of the dot matrix

const int row4 = 5; // Arduino Pin5 connect pin12 of the dot matrix

const int row5 = 17; // Arduino Pin17 (A3)connect pin1 of the dot matrix

const int row6 = 16; // Arduino Pin16 (A2)connect pin7 of the dot matrix

const int row7 = 15; // Arduino Pin15 (A1)connect pin2 of the dot matrix

const int row8 = 14; // Arduino Pin14 (A0)connect pin5 of the dot matrix

//the pin to control COl
const int col1 = 6; //Arduino Pin6 connect pin13 of the dot matrix

const int col2 = 7; // Arduino Pin7 connect pin3 of the dot matrix

const int col3 = 8; //Arduino Pin8 connect pin4 of the dot matrix

const int col4 = 9; // Arduino Pin9 connect pin10 of the dot matrix

const int col5 = 10; //Arduino Pin10 connect pin6 of the dot matrix

const int col6 = 11; //Arduino Pin11 connect pin11 of the dot matrix

const int col7 = 12; // Arduino Pin12 connect pin12 of the dot matrix

const int col8 = 13; // Arduino Pin13 connect pin13 of the dot matrix

void setup()

{

int i = 0 ;
for(i=2;i<18;i++)

{

pinMode(i, OUTPUT);
}

for(i=2;i<18;i++) {

digitalWrite(i, LOW);

54

}

}

void loop()

{

int i;
//the row # 1 and col # 1 of the LEDs turn on

digitalWrite(row1, HIGH);
digitalWrite(row2, LOW);
digitalWrite(row3, LOW);
digitalWrite(row4, LOW);
digitalWrite(row5, LOW);
digitalWrite(row6, LOW);
digitalWrite(row7, LOW);
digitalWrite(row8, LOW);
digitalWrite(col1, LOW);
digitalWrite(col2, HIGH);
digitalWrite(col3, HIGH);
digitalWrite(col4, HIGH);
digitalWrite(col5, HIGH);
digitalWrite(col6, HIGH);
digitalWrite(col7, HIGH);
digitalWrite(col8, HIGH);
delay(1000);
//turn off all
for(i=2;i<18;i++) {

digitalWrite(i, LOW);
}

delay(1000);
}

Experimental steps:

1.We need to open the code of this experiment: code-8x8_dot_matrix.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

55

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

3. After the selection is completed, you need to click “→”under the menu bar to upload
the code to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, thecode has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

56

4. After the code is uploaded.We can see that the lights in the first row and first column

of the dot matrix are twinkling，as shown in the following figure.

57

13- Tilt switch
The purpose of the experiment:

This lesson is ball switch experiment, it also belongs to the tilt switch just name is
different. It control the turning on or off of the circuit by the rolling contact pin of the
beads in the switch, so the LED can be switched on and off.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω resistor *1

10kΩ resistor *1

Tilt switch *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

Experimental code analysis:

58

int switchpin = 5;
int ledpin = 8;
int val = 0;
void setup()

{

pinMode(ledpin,OUTPUT);//Defining the led port for the output port
Serial.begin(9600);//The baud rate is 9600

}

void loop()

{

 val = analogRead(switchpin);
 if(val>512)//The analog voltage value of 512 is exactly 2.5V

 digitalWrite(ledpin,HIGH);//If val Greater than 2.5 V

 else//If val less than or equal to 2.5 V

 digitalWrite(ledpin,LOW);
 Serial.println(val);
}

Experimental steps:

1.We need to open the code of this experiment: code-8x8_dot_matrix.ino, click“√” under
the menu bar to compile the code, and wait for the word "Done compiling " in the lower
right corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

59

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

60

4. After the code is uploaded. The LED lights up when the ball switch is in the horizontal

position, and the LED turns off when we put the ball switch in the tilt position.，At the

same time, we can open the serial port monitor, we can also see the change of the
voltage value at both ends of the ball switch, as shown in the figure below.

61

14- Flame alarm
The purpose of the experiment:

In this lesson, we need to complete the experiment of fire alarm. The experimental
effect is: when there is no fire source approaching, the circuit is normal. When there is a
fire source approaching, the buzzer will make a sound.

Introduction of flame sensor:

The actual object is shown below. Flame sensor (Infrared receiving triode), Because
infrared is very sensitive to flame, we use a special infrared receiver tube to detect the
flame, and then convert the brightness of the flame into a level signal of high and low
change, and we need to input these signals into the MCU. Finally the MCU makes
corresponding program processing according to the change of the signals.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω resistor *1

10kΩ resistor *1

Tilt switch *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

62

Experimental code analysis:

int flame=A5; //Defining the analog port A5

int Beep=8; //Defining the digital port 8

int val=0; //Declarations of variables

void setup()

{

pinMode(Beep,OUTPUT); //Defining the digital port for the output port
pinMode(flame,INPUT); //Defining the analog port for the input port
Serial.begin(9600);//The baud rate is 9600

val=analogRead(flame); //Read analog port voltage

}

void loop()

{
Serial.println(analogRead(flame)); //The serial port sends the simulated voltage value

if((analogRead(flame)-val)>=600) //Determine whether the simulated voltage value is
greater than 600

digitalWrite(Beep,HIGH);
else

 digitalWrite(Beep,LOW);
 }

Experimental steps:

1.We need to open the code of this experiment: code-Tilt_switch.ino, click“√” under the
menu bar to compile the code, and wait for the word "Done compiling " in the lower right
corner, as shown in the figure below.

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

63

3.After the selection is completed, you need to click “ ”under the menu bar to upload
the code to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, thecode has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

64

4.After the code is uploaded. When there is no fire source approaching, the circuit is
normal. When there is a fire source approaching, the buzzer will make a sound to
indicate the alarm. We can also open the serial monitor to observe the change in the
value of the flame sensor, as shown in the figure below.

65

15- Nixie tube
The purpose of the experiment:

In this experiment, we need to finish to display 1-9 on a single 8-segment Nixie tube.

Introduction to digital tube:

Nixie tube is a semiconductor luminescent device, its basic unit is a light-emitting diode.
It is divided into 7-segment Nixie tube and 8-segment Nixie tube. 8-segment Nixie tube
more than 7-segment Nixie tube a light-emitting diode unit (more than a decimal point),
this experiment we use the 8-segment Nixie tube. The actual object is shown below.

According to the light-emitting diode unit connection mode, it is divided
into anode Nixie tubes and cathodeNixie tubes.

Anode Nixie tubes that connects the anodes of all light-emitting diodes together to form
a common anode (COM). The common pole (COM) shall be connected to +5V when
the common anode digital tube is applied. When the cathode of a certain field of light-
emitting diode is low , the corresponding field will be light up. When the cathode of a
field is high, the field does not light up.

Cathode Nixie tubes that connects the cathodes of all light-emitting diodes together to
form a common cathode (COM). The common pole COM shall be connected to GND
when the common cathode digital tube is applied. When the anode of a certain field of
light-emitting diode is high , the corresponding field will be light up. When the anode of a
field is low, the field does not light up.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω resistor *8

8-segment digital tube *1

Breadboard *1

Dupont line *1bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

66

Experimental code analysis:

int a=7; // Digital port 7 is connected to digital tube section a

int b=6; // Digital port 6 is connected to digital tube section b

int c=5; // Digital port 5 is connected to digital tube section c

int d=11; // Digital port 11 is connected to digital tube section d

int e=10; //Digital port 10 is connected to digital tube section e

int f=8; //Digital port 8 is connected to digital tube section f
int g=9; //Digital port 9 is connected to digital tube section g

int dp=4; //Digital port 4 is connected to digital tube decimal point section

void digital_1(void) //Displaying 1

{

unsigned char j;
digitalWrite(c,HIGH); //Light digital tube section c

digitalWrite(b,HIGH); //Light digital tube section b

for(j=7;j<=11;j++) //The level is pulled low of tube section 7~11(a,f,g,e,d)

digitalWrite(j,LOW);
digitalWrite(dp,LOW); //Tube decimal point section is off
}

void digital_2(void) //Displaying 1

{

unsigned char j;
digitalWrite(b,HIGH);
digitalWrite(a,HIGH);
for(j=9;j<=11;j++)

digitalWrite(j,HIGH);
digitalWrite(dp,LOW);
digitalWrite(c,LOW);
digitalWrite(f,LOW);

67

}

void digital_3(void) //Displaying 3

{

unsigned char j;
digitalWrite(g,HIGH);
digitalWrite(d,HIGH);
for(j=5;j<=7;j++)

digitalWrite(j,HIGH);
digitalWrite(dp,LOW);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
}

void digital_4(void) //Displaying 4

{

digitalWrite(c,HIGH);
digitalWrite(b,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
digitalWrite(a,LOW);
digitalWrite(e,LOW);
digitalWrite(d,LOW);
}

void digital_5(void) //Displaying 5

{

unsigned char j;
for(j=7;j<=9;j++)

digitalWrite(j,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(dp,LOW);
digitalWrite(b,LOW);
digitalWrite(e,LOW);
}

void digital_6(void) //Displaying 6

{

unsigned char j;
for(j=7;j<=11;j++)

digitalWrite(j,HIGH);
digitalWrite(c,HIGH);
digitalWrite(dp,LOW);
digitalWrite(b,LOW);
}

void digital_7(void) //Displaying 7

{

unsigned char j;
for(j=5;j<=7;j++)

digitalWrite(j,HIGH);
digitalWrite(dp,LOW);
for(j=8;j<=11;j++)

digitalWrite(j,LOW);
}

68

void digital_8(void) //Displaying 8

{

unsigned char j;
for(j=5;j<=11;j++)

digitalWrite(j,HIGH);
digitalWrite(dp,LOW);
}

void digital_9(void) //Displaying 9

{

digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,HIGH);
}

void setup()

{

int i; //Declarations of variables

for(i=4;i<=11;i++)

pinMode(i,OUTPUT); //Defining the port4-11 for the input port
}

void loop()

{

 while(1)

 {

 digital_1(); //Displaying 1

 delay(1000);
 digital_2(); //Displaying 2

 delay(1000);
 digital_3(); //Displaying 3

 delay(1000);
 digital_4(); //Displaying 4

 delay(1000);
 digital_5(); //Displaying 5

 delay(1000);
 digital_6(); //Displaying 6

 delay(1000);
 digital_7(); //Displaying 7

 delay(1000);
 digital_8(); //Displaying 8

 delay(1000);
 digital_9(); //Displaying 9

 delay(1000);
 }

}

Experimental steps:

1.We need to open the code for this experiment: code-Tilt_switch.ino, click “√”under the
menu bar,compile the code, and wait for the words of Done compiling in the lower left
corner, as shown in the following figure.

69

2. In the menu bar of Arduino IDE, we need to select 【Tools】---【Port】---

 selecting the port that the serial number displayed by the device manager just now, as
shown in the figure below. For example:COM6,as shown in the following figure.

70

3. After the selection is completed, you need to click “ ”under the menu bar to upload
thecode to the Arduino UNO board. When the word “Done uploading” appears in the
lower left corner, the code has been successfully uploaded to the Arduino UNO board,
as shown in the figure below.

4. After the code is uploaded, we can see that display 1-9 on a single 8-segment digital
tube, as shown in the figure below.

71

72

16- 4-Nixie tube
The purpose of the experiment:

In this experiment, arduino was used to drive a four-digit tube with a common Yin. Is the
purpose of the experiment: the first Nixie tube display 1,the second Nixie tube
display 2 ,the third Nixie tube display 3 and fourth Nixie tube display4 with such intervals
of 0.5 seconds to display.

Introduction to digital tube:

Nixie tube is a semiconductor luminescent device, its basic unit is a light-emitting diode.
According to the number of digital tube is divided into 7-segment Nixie tube and 8-
segment Nixie tube. 8-segment Nixie tube more than 7-segment Nixie tube a light-
emitting diode unit (more than a decimal point), this experiment use the8-
segment Nixie tube.The actual object is shown below.

According to the light-emitting diode unit connection mode, it is divided
into anode Nixie tubes and cathodeNixie tubes.

Anode Nixie tubes that connects the anodes of all light-emitting diodes together to
form a common anode (COM). The common pole COM shall be connected to +5V when
the common anode digital tube is applied. When the cathode of a certain field of light-
emitting diode is low , the corresponding field will be light up. When the cathode of a
field is high, the field does not light up.

Cathode Nixie tubes that connects the cathodes of all light-emitting diodes together to
form a common cathode (COM). The common pole COM shall be connected to GND
when the common cathode digital tube is applied. When the anode of a certain field of
light-emitting diode is high , the corresponding field will be light up. When the anode of a
field is low, the field does not light up.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

220Ω resistor *8

4bit 8-segment digital tube *1

Breadboard *1

dupont line *1bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

73

Experimental code analysis:

#define SEG_A 2 //Arduino Pin2--->SegLed Pin11

#define SEG_B 3 //Arduino Pin3--->SegLed Pin7

#define SEG_C 4 //Arduino Pin4--->SegLed Pin4

#define SEG_D 5 //Arduino Pin5--->SegLed Pin2

#define SEG_E 6 //Arduino Pin6--->SegLed Pin1

#define SEG_F 7 //Arduino Pin7--->SegLed Pin10

#define SEG_G 8 //Arduino Pin8--->SegLed Pin5
#define SEG_H 9 //Arduino Pin9--->SegLed Pin3

#define COM1 10 //Arduino Pin10--->SegLed Pin12

#define COM2 11 //Arduino Pin11--->SegLed Pin9

#define COM3 12 //Arduino Pin12--->SegLed Pin8

#define COM4 13 //Arduino Pin13--->SegLed Pin6

unsigned char table[10][8] =
{

{0, 0, 1, 1, 1, 1, 1, 1}, //0

{0, 0, 0, 0, 0, 1, 1, 0}, //1

{0, 1, 0, 1, 1, 0, 1, 1}, //2

{0, 1, 0, 0, 1, 1, 1, 1}, //3

{0, 1, 1, 0, 0, 1, 1, 0}, //4

{0, 1, 1, 0, 1, 1, 0, 1}, //5

{0, 1, 1, 1, 1, 1, 0, 1}, //6

{0, 0, 0, 0, 0, 1, 1, 1}, //7

{0, 1, 1, 1, 1, 1, 1, 1}, //8

{0, 1, 1, 0, 1, 1, 1, 1} //9

};
void setup()

{

pinMode(SEG_A,OUTPUT); //Defining the port for the output port
pinMode(SEG_B,OUTPUT);
pinMode(SEG_C,OUTPUT);
pinMode(SEG_D,OUTPUT);
pinMode(SEG_E,OUTPUT);

74

pinMode(SEG_F,OUTPUT);
pinMode(SEG_G,OUTPUT);
pinMode(SEG_H,OUTPUT);

pinMode(COM1,OUTPUT);
pinMode(COM2,OUTPUT);
pinMode(COM3,OUTPUT);
pinMode(COM4,OUTPUT);
}

void loop()

{

Display(1,1); //Displaying 1 on the first bit of the Nixie tube

delay(500);
Display(2,2); //Displaying 2 on the second bit of the Nixie tube

delay(500);
Display(3,3); //Displaying 3 on the third bit of the Nixie tube

delay(500);
Display(4,4); //Displaying 4 on the fourth bit of the Nixie tube

delay(500);
}

void Display(unsigned char com,unsigned char num)

{

digitalWrite(SEG_A,LOW); //This is to get rid of the shadow

digitalWrite(SEG_B,LOW);
digitalWrite(SEG_C,LOW);
digitalWrite(SEG_D,LOW);
digitalWrite(SEG_E,LOW);
digitalWrite(SEG_F,LOW);
digitalWrite(SEG_G,LOW);
digitalWrite(SEG_H,LOW);
switch(com) //This is to select the display location

{

case 1:
digitalWrite(COM1,LOW); //First bit of the Nixie tube

digitalWrite(COM2,HIGH);
digitalWrite(COM3,HIGH);
digitalWrite(COM4,HIGH);
break;
case 2:
digitalWrite(COM1,HIGH);
digitalWrite(COM2,LOW); //Second bit of the Nixie tube

digitalWrite(COM3,HIGH);
digitalWrite(COM4,HIGH);
break;
case 3:
digitalWrite(COM1,HIGH);
digitalWrite(COM2,HIGH);
digitalWrite(COM3,LOW); //Third bit of the Nixie tube

digitalWrite(COM4,HIGH);
break;
case 4:
digitalWrite(COM1,HIGH);

75

digitalWrite(COM2,HIGH);
digitalWrite(COM3,HIGH);
digitalWrite(COM4,LOW); //Fourth bit of the Nixie tube

break;
default:break;
}

digitalWrite(SEG_A,table[num][7]);
digitalWrite(SEG_B,table[num][6]);
digitalWrite(SEG_C,table[num][5]);
digitalWrite(SEG_D,table[num][4]);
digitalWrite(SEG_E,table[num][3]);
digitalWrite(SEG_F,table[num][2]);
digitalWrite(SEG_G,table[num][1]);
digitalWrite(SEG_H,table[num][0]);
}

Experimental steps:

1.We need to open the code for this experiment: code-4-Nixie_tube.ino, click “√”under
the menu bar,compile the code, and wait for the words of Done compiling in the lower
left corner, as shown in the following figure.

2. In the menu bar of Arduino IDE，we need to select the 【Tools】---【Port】--- select

the port that the serial number displayed by the device manager just now.for
example:COM6,as shown in the following figure.

76

3. After the selection is completed, click “ ”under the menu bar,and upload the code to
the Arduino UNO board, when appears to Done uploading on the lower left corner , that
means that the code has been successfully uploaded to the Arduino UNO board, as
shown in the following figure.

77

4. After the code is uploaded, the first Nixie tube display 1,the second Nixie tube
display 2 ,the third Nixie tube display 3 and fourth Nixie tube display4 with such intervals
of 0.5 seconds to display.

78

17- 74HC595
The purpose of the experiment:

74HC595 is an 8-bit serial input and parallel output displacement buffer: the parallel
output is three-state output. In this course, we use three digital I/O ports of Arduino to
control 8 LED lights by 74HC595, so that they were lit in 8-bit binary (0-256) order.

The actual object is shown below.

Binary order:
00000001 00000010 00000011 00000100 00000101 00000110
00000111 00001000 00001001 00001010 00001011 00001100
......
10000000

 number of pin name of pin Description

1,2,3,4,5,6,7,15 QB,QC,QD,QE,QG,QH,QA Tri-state output pin

8 GND GND

9 SQH Serial port data
output pin

10 SCLR Shift register clear

11 SCK Data input clock
line

12 RCK Output memory
latch clock line

13 OE Output enable

14 SI Data line

79

16 VCC VCC

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

74HC595 *1

220Ω resistor *8

LED *8

Breadboard *1

Dupont line *1bunch

Material object connection diagram：

We need to connect circuit as shown in the following figure.

 Experimental code analysis:

//connect 74hc595 pin10:MR--->VCC; Pin13:OE--->GND

int latchPin = 5; //to 595 pin12

int clockPin = 4; //to 595 pin11

int dataPin = 2; //to 595 pin14

void setup ()

{

 pinMode(latchPin,OUTPUT); //Defining the port5 for the output port
 pinMode(clockPin,OUTPUT); //Defining the port4 for the output port
 pinMode(dataPin,OUTPUT); //Defining the port2 for the output port
}

80

void loop()

{

 for(int a=0; a<256; a++) //The meaning of this loop is to let a variable increase by 1
until it is equal to 256.
 //The following activities are performed every cycle.
 {

 digitalWrite(latchPin,LOW); //Giving a low level to the port ST_CP indicates that the
chip is ready to receive data.
 shiftOut(dataPin,clockPin,MSBFIRST,a);
 /*

 dataPin：Data output pin, each bit of data will be output sequentially. Mode of pin

needs to be set to output.

 clockPin：Clock output pin. Mode of pin needs to be set to output

 bitOrder：Data shift order selection bit.The type of this parameter is byte,

 High-level first-entry MSBFIRST or low-level first-entry LSBFIRST Can be selected
by youself.
 a:The data value to be output.
 */
 digitalWrite(latchPin,HIGH); //Giving a low level to the port ST_CP

 delay(1000); //Pause for 1 second to make you see the effect
 }
}

Experimental steps:

1.We need to open the code for this experiment: code-74HC595.ino, click “√”under the
menu bar,compile the code, and wait for the words of Done compiling in the lower left
corner, as shown in the following figure.

2. In the menu bar of Arduino IDE，we need to select the 【Tools】---【Port】--- select

the port that the serial number displayed by the device manager just now.for
example:COM6,as shown in the following figure.

81

3. After the selection is completed, you need to click “→”under the menu bar,and upload
thecode to the Arduino UNO board, when appears to Done uploading on the lower left
corner , that means that the code has been successfully uploaded to the
Arduino UNO board, as shown in the following figure.

82

4. After the code is uploaded, We can see that 8 LEDs will be lit from 00000001 to
10000000, as shown in the following figure.(Just an example)

83

18- servo control
The purpose of the experiment:

Based on Arduino UNO, a code is written to rotate the servo to the angle corresponding
to the user's input number, and the angle print is displayed on the serial monitor of the
Arduino IDE.

About the servo：

The actual object is shown below. Servo rotation angle is by adjusting the duty ratios of
PWM (pulse width modulation) signal. The standard PWM (pulse width modulation)
signal has a fixed period of 20ms (50Hz). Theoretically, pulse width distribution should
be between 1 ms to 2 ms, but in fact between pulse width can be 0.5 ms and 2.5 ms.

Pulse width and the servo rotation angle 0°～180° corresponds, as shown in the figure

below.

 Servo have many specifications, but all of the servo possess external three lines, with
brown, red, orange, three kinds of color to distinguish. Due to brand is different, color is
different, brown for the grounding line, red for positive line, orange for signal lines.

Note: Due to brand is different, for the same signal, different brands of servo rotation
angle will be different.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

Servo *1

Dupont line *1 bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

84

Experimental code analysis:

//UART send 1~9==>20~180 degree

int servopin=9;//Defining the port 9 for the servopin

int myangle;//Define Angle variable

int pulsewidth;//Define the pulse width variable

int val;
void servopulse(int servopin,int myangle)

/*A pulse function is defined to generate PWM values by simulation */
{

 pulsewidth=(myangle*11)+500;//Convert the Angle to 500-2480 pulse width

 digitalWrite(servopin,HIGH);//Giving a high level to the servo interface

 delayMicroseconds(pulsewidth);//The number of microseconds of delay pulse width

 digitalWrite(servopin,LOW);//Giving a low level to the servo interface

 delay(20-pulsewidth/1000);//The remaining time in the delay period

}

void setup()

{

 pinMode(servopin,OUTPUT);//Defining the servopin port for the output port
 Serial.begin(9600);//The baud rate is 9600

 Serial.println("servo=o_seral_simple ready") ;
}

void loop()

{

val=Serial.read();//Reading the data received by the serial port
if(val>'0'&&val<='9')//Determineing whether the received data values conform to the
range

{

val=val-'0';//Convert ASCII code to a value,for exmaple：'9'-'0'=0x39-0x30=9

val=val*(180/9);//Convert Numbers into angles,for exmaple：9*（180/9）=180

Serial.print("moving servo to ");

85

Serial.print(val,DEC);
Serial.println();
for(int i=0;i<=50;i++)

 //Generate the number of PWM, equivalent delay to ensure that the response Angle
can be turned

{

servopulse(servopin,val);//Generate PWM values by simulation

}

}

}

Experimental steps:

1.We need to open the code for this experiment: code-servo_control.ino, click “√”under
the menu bar, compile the code, and wait for the words of Done compiling in the lower
left corner, as shown in the following figure.

2. In the menu bar of Arduino IDE，you need to select the 【Tools】---【Port】---

select the port that the serial number displayed by the device manager just now.for
example:COM6,as shown in the following figure.

86

3. After the selection is completed, you need to click “→”under the menu bar,and upload
the code to the Arduino UNO board, when appears to Done uploading on the lower left
corner , that means that the code has been successfully uploaded to the
Arduino UNO board, as shown in the following figure.

4. You can open the serial port monitor on the top right corner of Arduino IDE, A serial
port of Arduino port will appear, and the baud rate is set to 9600 on the lower right
corner, as shown in the following figure.

87

5.After the code is uploaded, we open the serial port monitor of Arduino IDE, you can
see the words "servo=o_seral_simple ready" written in the program. And then input a
number between 1 ~ 9 randomly in the send box, servo will turn the corresponding
angle. Moreover, the serial port monitor will print out the corresponding angle, a
comment in the program: "UART send 1~9= >20~180 degree" as shown in the figure
below (for example only).

88

19- IR control
The purpose of the experiment:

In this experiment, we will make the IR remote controller communicate with the IR
receiver sensor.

About the infrared remote control：

The signal from the IR remote controller is a series of binary pulse codes. In order to
protect it from other infrared signals during wireless transmission. It is modulated on a
specific carrier frequency ,and then transmitted by infrared emission sensor. The
infrared receiving device need to filter out other waveform and receive the signal of the
specific frequency and restore it to binary pulse code, this process is called
demodulation.

The IR receiver sensor converts the optical signal emitted by the infrared emission
sensor to a weak electrical signal. These signals are restored to the original encode by
various circuits, finally outputs the signal to the control circuit.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

IR receiver sensor *1

IR remote controller *1

Breadboard *1

Dupont line *1 bunch

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

89

Experimental code analysis:

#include <IRremote.h>//Including infrared library

int RECV_PIN = 11; // Declarations of port
int LED1 = 2;
int LED2 = 3;
int LED3 = 4;
int LED4 = 5;
int LED5 = 6;
int LED6 = 7;
long on1 = 0x00FF6897;//Code the example to match the send

long off1 = 0x00ff30CF;
long on2 = 0x00FF9867;
long off2 = 0x00FF18E7;
long on3 = 0x00FFB04F;
long off3 = 0x00FF7A85;
long on4 = 0x00FF10EF;
long off4 = 0x00FF42BD;
long on5 = 0x00FF38C7;
long off5 = 0x00FF4AB5;
long on6 = 0x00FF5AA5;
long off6 = 0x00FF52AD;
IRrecv irrecv(RECV_PIN);
decode_results results;//Declarations of struct
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()

// void * to work around compiler issue

//void dump(void *v) {

// decode_results *results = (decode_results *)v

void dump(decode_results *results)

{

int count = results->rawlen;
if (results->decode_type == UNKNOWN)

{

90

Serial.println("Could not decode message");
}

else

{

if (results->decode_type == NEC)

{

Serial.print("Decoded NEC: ");
}

else if (results->decode_type == SONY)

{

Serial.print("Decoded SONY: ");
}

else if (results->decode_type == RC5)

{

Serial.print("Decoded RC5: ");
}

else if (results->decode_type == RC6)

{

Serial.print("Decoded RC6: ");
}

Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}

Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++)

{

if ((i % 2) == 1)

{

Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}

else
{

Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}

Serial.print(" ");
}

Serial.println("");
}
void setup()

{

pinMode(RECV_PIN, INPUT); //Defining the RECV port for the input port
pinMode(LED1, OUTPUT);//Defining the LED1 port for the output port
pinMode(LED2, OUTPUT);//Defining the LED2 port for the output port
pinMode(LED3, OUTPUT);//Defining the LED3 port for the output port
pinMode(LED4, OUTPUT);//Defining the LED4 port for the output port
pinMode(LED5, OUTPUT);//Defining the LED5 port for the output port
pinMode(LED6, OUTPUT);//Defining the LED6 port for the output port
pinMode(13, OUTPUT);//Defining the port13 for the output port

91

Serial.begin(9600); //The baud rate is 9600

irrecv.enableIRIn(); // Start the receiver

}

int on = 0;
unsigned long last = millis();
void loop()

{

 if (irrecv.decode(&results)) //Calling the library function: decode

 {

 // If it's been at least 1/4 second since the last
 // IR received, toggle the relay

 if (millis() - last > 250)

 {

 on = !on;
 digitalWrite(13, on ? HIGH : LOW);
 dump(&results);
 }

 if (results.value == on1)

 digitalWrite(LED1, HIGH);
 if (results.value == off1)

 digitalWrite(LED1, LOW);
 if (results.value == on2)

 digitalWrite(LED2, HIGH);
 if (results.value == off2)

 digitalWrite(LED2, LOW);
 if (results.value == on3)

 digitalWrite(LED3, HIGH);
 if (results.value == off3)

 digitalWrite(LED3, LOW);
 if (results.value == on4)

 digitalWrite(LED4, HIGH);
 if (results.value == off4)

 digitalWrite(LED4, LOW);
 if (results.value == on5)

 digitalWrite(LED5, HIGH);
 if (results.value == off5)

 digitalWrite(LED5, LOW);
 if (results.value == on6)

 digitalWrite(LED6, HIGH);
 if (results.value == off6)

 digitalWrite(LED6, LOW);
 last = millis();
 irrecv.resume(); // Receive the next value

 }

}

Experimental steps:

1.You need to open the code for this experiment: code-IR_control.ino, click “√”under the
menu bar, compile the code, and wait for the words of Done compiling in the lower left
corner, as shown in the following figure.

92

2. In the menu bar of Arduino IDE，select the 【Tools】---【Port】--- select the port

that the serial number displayed by the device manager just now.for example:COM6,as
shown in the following figure.

93

3. After the selection is completed, you need to click “→”under the menu bar,and upload
the code to the Arduino UNO board, when appears to Done uploading on the lower left
corner , that means that the code has been successfully uploaded to the
Arduino UNO board, as shown in the following figure.

4. After the code is uploaded, we need to open the serial monitor of Arduino IDE, and
set the baud rate to 9600. When we press the button on the infrared remote controller,
we can see the code value of the corresponding button on the serial monitor, as shown
below (Just for example).

94

--

Steps to add a library file

Note:Before you compile the code, you must look at this steps.

1.We need to add IRremote file, as shown in the figure below.

2.You need to find the installation path of Arduino. As shown in the figure below.(just
for example)

This is my Arduino installation path.

3. You need to copy this file into the libraries folder in the Ardunio installation path.

As shown in the figure below.

95

4.You need to open Arduino IDE and click 【Sketch】---【Import library】---【Add

library】. As shown in the figure below.

5.You need to add 【IRremote】to here. As shown in the figure below.

6.After the addition is completed, the words “Library added to your libraries.” will appear
in the lower right corner of the Arduino IDE. As shown in the figure below.

96

7. You can see these library files on the Arduino IDE. As shown in the figure below.

8.After completing the above steps, you can compile and upload this code successfully .

97

20- 1602 display
The purpose of the experiment:

In this experiment, we use Arduino UNO to directly drive 1602 display letters.

Introduction of 1602：

The actual object is shown below.

Main specification of 1602LCD:
Display capacity: 16 x 2 characters;
Working current: 2.0mA
Operating voltage: 5.0v
Size of character: 2.95 * 4.35 (W * H) mm.
1602 possess 16 pins:
Pin 1: VSS is ground power
Pin 2: VDD is connected to 5V positive power supply
Pin 3: V0 is the LCD contrast adjustment pin, which can be adjusted by a 10K
adjustable resistor.

Pin 4: RS is the register selection pin, data register is selected at high voltage and instru
ction register is selected at low voltage.
Pin 5: R/W is the signal line for reading and writing. Reading operation is carried out at
high level and writing operation is carried out at low level.
Pin 6: E pin is the enable pin. When this pin changes from high level to low level, the LC
D module executes the command.
Pin 7 ~ Pin 14: D0 ~ D7 is 8-bit two-way data line.
Pin 15: power positive pole of backlight.
Pin 16: power negative pole of backlight.

List of components required for the experiment:

Arduino UNO board *1

USB cable *1

1602 *1

Dupont line *1 bunch

Breadboard *1

Actual object connection diagram：

We need to connect the circuit as shown in the figure below.

98

Experimental code analysis:

#include <LiquidCrystal.h>

//Declaring the Arduino digital port connected to the 1602 LCD pin,
//8-wire or 4-wire data mode, either one

LiquidCrystal lcd(12,11,10,9,8,7,6,5,4,3,2);
//LiquidCrystal lcd(12,11,10,5,4,3,2);
int i;
void setup()

{

 lcd.begin(16,2); //Initialization of 1602
 //The 1602 LCD display range is defined as 2 lines and 16 columns
characters

 while(1)

 {

 lcd.home(); //Moving the cursor back to the upper left corner,output from the
beginning
 lcd.print("Hello World");
 lcd.setCursor(0,1); //The cursor is positioned on line 1, column 0

 lcd.print("Welcome to Yahboom-Arduino");
 delay(500);
 for(i=0;i<3;i++)

 {

 lcd.noDisplay();
 delay(500);
 lcd.display();
 delay(500);
 }

 for(i=0;i<24;i++)

 {

 lcd.scrollDisplayLeft();
 delay(500);
 }

 lcd.clear();

99

 lcd.setCursor(0,0); //Moving the cursor back to the upper left corner,output from the
beginning
 lcd.print("Hi,");
 lcd.setCursor(0,1); //The cursor is positioned on line 1, column 0

 lcd.print("Arduino is fun");
 delay(2000);
 }

}

void loop()

{}//Initialization is complete and the main loop is not need to do anythings

Experimental steps:

1.We need to open the code for this experiment: code-1602_display.ino, click “√”under
the menu bar,compile the code, and wait for the words of Done compiling in the lower
left corner, as shown in the following figure.

2. In the menu bar of Arduino IDE，you need to select the 【Tools】---【Port】---

select the port that the serial number displayed by the device manager just now.for
example:COM6,as shown in the following figure.

100

3. After the selection is completed, you need to click “ ”under the menu bar,and
upload the program to the Arduino UNO board, when appears to Done uploading on the
lower left corner , that means that the code has been successfully uploaded to the
Arduino UNO board, as shown in the following figure.

4.After the code is uploaded. First, the 1602 screen will display “Hello World, Welcome
to yahboom-arduino” and flash three times. Then,“Hello World,Welcome to yahboom-
arduino,” is displayed from the right to the left. Next, “Hi,Arduino is fun.” is displayed on
the 1602. Finally, itclear the screen, and continue the endless cycle.

As shown in the figure below.

