Operating Instruction

Multi-channel Handheld LCR Meter

JK824/825/826 Handheld LCR Meter

User's Guide

Safety Summary

Disclaimer	Jinko Instruments assumes no liability for the customer's failure to comply with these requirements.
DO NOT Operate In An Explosive Atmosphere	Do not operate the instrument in the presence of inflammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.
DO NOT Operate In A Damp Atmosphere	The instrument is not waterproof; keep instrument probes away from water, the instrument should not be used in damp conditions.
DO NOT Open Instrument Case	Other than replacing the old battery, non-professional maintenance staff do not open the instrument case, in an attempt to repair the instruments.
DO NOT Substitute Parts Or Modify Instrument	Try to substitute parts or modify instrument will cause protection failure.

Warning:

1. Do not connect probes with DC voltage or live circuits

2. Before measuring capacitors, make sure the capacitors had been discharged.

Safety Sign;

Equipment protection by double insulation or reinforced insulation

Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

Do not discard in household garbage

CERTIFICATION, LIMITED WARRANTY, & LIMITATION OF LIABILITY

Changzhou Jinailian Electronic Technology Co.,Ltd (shortened form JINKO) certifies that this product met its published specifications at the time of shipment from the factory. **JINKO** further certifies that its calibration measurements are traceable to the People's Republic of China National Institute of Standards and Technology, to the extent allowed by the Institution's calibration facility or by the calibration facilities of other International Standards Organization members.

This Jinko instrument product is warranted against defects in material and workmanship for a period corresponding to the individual warranty periods of its component products. **The warranty period is 1 year and begins on the date of shipment.** During the warranty period, **JINKO** will, at its option, either repair or replace products that prove to be defective. This warranty extends only to the original buyer or end-user customer of a **JINKO** authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in **JINKO**'s opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling.

For warranty service or repair, this product must be returned to a service facility designated by **JINKO**. The buyer shall prepay shipping charges to **JINKO** and **JINKO** shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to **JINKO** from another country.

JINKO warrants that its software and firmware designated by **JINKO** for use with an instrument will execute its programming instruction when properly installed on that instrument. **JINKO** does not warrant that the operation of the instrument, or software, or firmware, will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Jinko SHALL NOT BE LIABLE FOR ANY SPECIAL. INDIRECT. INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

> JINKO Instruments, Inc. Changzhou, Jiangsu, China, Oct 2009 Rev.A3

Contents

Safe	ty Su	Immary		2
CER	TIFI	CATIO	N, LIMITED WARRANTY, & LIMITATION OF LIABILITY	3
Cont	tents			4
Figu	re Co	ontents .		7
Tabl	e Coi	ntents		8
1.	Unp	acking a	and Preparation	9
	1.1	In	coming Inspection	9
	1.2	Pc	ower Requirements	9
	1.3	Er	vironmental Requirements	9
	1.4	Cl	eaning	10
	1.5	Re	eplace the battery	. 10
	1.6	A	djust the support.	11
2.	Ove	rview	2	12
	2.1	In	troduction	12
	2.2	Μ	ain Specifications and Features	12
		2.2.1	Measurement parameters	12
		2.2.2	Equivalent Circuit	13
		2.2.3	Range	13
		2.2.4	Measurement Speed	13
		2.2.5	Basic Accuracy	. 14
		2.2.6	Measurement Range	. 14
	2.3	Te	st Signal	15
		2.3.1	Test Signal Frequency	15
		2.3.2	Test Signal Level	. 15
		2.3.3	Output Impedance	15
	2.4	M	ain Functions	15
		2.4.1	Correction	15
		2.4.2	Comparator (Sorting Function)	. 15
		2.4.3	System Setup	15
		2.4.4	Interface	15
3.	Start	tup		16
	3.1	Fr	ont Panel	16
	3.2	LC	CD Screen	17
	3.3	In	terfaces	18
	3.4	Ex	cternal Power and Battery	18
		3.4.1	Charge Li Battery	19
	3.5	Pc	ower up	19
	3.6	Uı	nknown Terminals Slot	20
		3.6.1	Clips and Cables:	20
4.	[ME	AS DIS	PLAY] Page	21

	4.1	<m]< th=""><th>EAS DISPLAY></th><th> 21</th></m]<>	EAS DISPLAY>	21
		4.1.1	Measurement Function [FUNC A] [FUNC B]	21
		4.1.2	Test Signal Frequency [FREQ]	22
		4.1.3	Impedance Range [RANGE]	23
		4.1.4	Measurement Speed [SPEED]	24
		4.1.5	Equivalent Circuit [EQU]	24
5.	[SE	TUP] Page	e	25
	5.1	<se< td=""><td>TUP> Page</td><td>25</td></se<>	TUP> Page	25
		5.1.1	Comparator [COMP]	25
		5.1.2	[BEEP]Set	26
		5.1.3	Input Nominal Value [NOM]	26
		5.1.4	Input Tolerance Value [TOL]	27
	5.2	Use	r Correction	28
		5.2.1	Open Correction [OPEN CORR]	28
		5.2.2	Short Correction	. 29
6.	[SY	STEM CC	ONFIG] Page	30
	6.1	<sy< td=""><td>STEM CONFIG> page</td><td>. 30</td></sy<>	STEM CONFIG> page	. 30
		6.1.1	[LANGUAGE]	30
		6.1.2	[FILE]	31
		6.1.3	[TOUCH PANEL]	31
		6.1.4	[BRIGHTNESS]	32
		6.1.5	DIM DISPLAY [DIM]	33
		6.1.6	AUTO POWER OFF [APO]	33
7.	EXA	AMPLES .		34
	7.1	Exa	mple	34
8.	Ren	note Contr	ol	36
	8.1	USE	3-HID	36
	8.2	Prog	gramming guide	. 36
	8.3	Con	nmand set	37
		8.3.1	Command packet	37
		8.3.2	Notation Conventions and Definitions	38
	- 6	8.3.3	Parameter types	39
	8.4	Con	nmand Reference	
		8.4.1	DISP Subsystem	40
		8.4.2	FUNC Sub System	40
		8.4.3	FREQ Sub System	42
		8.4.4	APER Speed Sub System	43
		8.4.5	FETC? Sub System	
		8.4.6	COMP Comparator sub system	43
		8.4.7	Correction subsystem	44
		8.4.8	SYS1 System Sub System	45
		8.4.9	IDN? Subsystem	45
		8.4.10	KST Subsystem	45

	8.4.11	Error Subsystem	
	8.5 Co	ommand List	
9.	Specification	1	
	9.1 Ge	eneral Specification	
	9.2 Ac	ccuracy	
	9.2.1	C and D	
	9.2.2	L and Q	
	9.2.3	Z and θ	
	9.2.4	ESR	
	9.3 De	emensions	

Figure Contents

Replace the battery	10
60 Degrees Supporting	11
45 Degrees Supporting	11
Front Panel	16
LCD Screen	17
Interface panel	18
Power Adapter	19
Charging LED (Orange)	19
Unknown Terminals	20
<meas display=""> Page</meas>	21
<setup> page</setup>	25
To input nominal by touch screen	26
Stray Admittance	29
Remaining impedance	29
<system config=""> Page</system>	30
The Brightness key	32
Example	35
The Jinko USB logo in windows device manager	36
	Replace the battery

Table Contents

Table 2-1	Equivalent Circuit	
Table 2-2	JK824 Measurement Range	14
Table 2-3	JK825 Measurement Range	14
Table 2-4	JK826 Measurement Range	14
Table 3-1	Description of the Front Panel	17
Table 3-2	LCD Screen descriptions	17
Table 3-3	Interface panel description	18
Table 4-1	Primary Parameters	21
Table 4-2	Sub Parameters	
Table 4-3	Parameters descriptions	
Table 4-4	Auto Range and Range Hold	
Table 4-5	Range No	
Table 8-1	A complete command pack in Hex format.	
Table 8-2	Notation Conventions and Definitions	
Table 8-3	Available data type	
Table 8-4	Magnification	
Table 8-5	The Error Code and message	45
Table 8-6	All USB Commands	

1. Unpacking and Preparation

This chapter describes how to set up and start the JK824/825/826 Handheld LCR Digital Meter.

- Incoming Inspection
- Power Requirement
- Operation Environment
- Cleaning

1.1 Incoming Inspection

- 1. Referring to <Packing List> in the packing box, check that all packaged items supplied with the meter have been provided as listed
- 2. Check the appearance of whether there is damage or scratches If there was damage or lack of accessories, please contact Jinko Instruments Sales Department or local agency.

1.2 Power Requirements

AC power adapter: JKL909 Rechargeable Li battery: JKL805: Input: 90V-260VAC, 49Hz~62Hz, <10VA

1.3 Environmental Requirements

Temperature: 0°C ~ 55°C, Humidity: at 23°C, <70% R.H. Altitude: 0~2000m

1.4 Cleaning

Do not clean the inside of the equipment.

Warning: Do not use the cleaning solvent (alcohol or gasoline, etc.) on the instrument.

Please use a clean cloth dipped in some water to do the case and panel cleaning.

1.5 Replace the battery

The instrument built-in rechargeable lithium battery, the battery has been installed in the battery compartment of the instrument at the factory. You should replace the battery according to the following procedure.

Figure 1-1 Replace the battery

- 1. Use a screwdriver to loosen the screws of the battery cover, remove the battery cover.
- 2. Remove the plug on the old battery, plug in new battery plug.
- 3. Put a new battery into the battery compartment, replace the battery cover and tighten the screws.

1.6 Adjust the support

The support has two positions: 60 degrees and 45 degrees. 45 degrees, makes the instrument more stable.

Figure 1-2 60 Degrees Supporting

Figure 1-3 45 Degrees Supporting

2. Overview

This chapter contains general information about JK824/825/826 Handheld LCR Digital Meter.

- Introduction
- Test Functions
- Signal Source
- Main Function

2.1 Introduction

Thank you for purchasing JK824/825/826 Handheld LCR Digital Meter

JK826, 825, 824 series handheld LCR Digital electric bridge adopts high performance 32-bit ARM microprocessor. True-color TFT liquid crystal display, keypad and touch screen double control. Use Li- battery supply power and USB communication. Switch in both English and Chinese. JK826, 825 handheld LCR digital meters have the highest configuration.

With the highest frequency of 100 kHz, constant 100Ω source internal resistance, 0.6Vrms measurement voltage level, and 0.2% accuracy, make JK826, 825 have the excellent performance of both desktop instrument and portability of handheld.

Referrance Full specifications in Section 9

2.2 Main Specifications and Features

2.2.1 Measurement parameters

Main Parameters[FUNC A]: Capacitance C, Inductance L, Resistance R, Impedance Z and Auto. Secondary Parameters[FUNC B]: Auto, Dissipation D, Quality Q and ESR (ESR: Equivalent series resistance)

2.2.2 Equivalent Circuit

Serial(Subscript s), Parallel(Subscript p)...

Table 2-1 Equivalent Circuit

 $Q=Xs/Rs, D=Rs/Xs, Xs=1/2\pi FCs=2\pi FLs$

Typically, for low impedance components (such as high-value capacitance and capacitance and low inductance), use the series equivalent circuit. Vice versa, use the parallel equivalent circuit for the high impedance components (low capacitance and high value of inductance).

Tips

Also take the actual usage of the component into consideration, such as for power supply filtering capacitor series equivalent circuit for the LC oscillator circuit, use the parallel equivalent circuit.

2.2.3 Range

Auto and Hold range. Total 5 Ranges.

2.2.4 Measurement Speed

Fast: 4 readers per second. Slow: 1.5 readers per second

2.2.5 Basic Accuracy

0.2%

2.2.6 Measurement Range

Table 2	2-2 JK824	Measurement Range
	Parameter	Measurement Ranger
	L	0.1µH ~ 999.9H
	С	0.1pF ~ 999.9mF
	R, X, Z	0.0001Ω ~ 99.99MΩ
	D	0.0001 ~ 9.999
	Q	0.0001 ~ 999.9
	Θd	-179.99° ~ 179.99°
	Θr	-3.1416 ~ 3.1416
	%	-999.9% ~ 999.9%

Table 2-3 JK825 Measurement Range

Parameter	Measurement Ranger
L	0.01µH ~ 999.9H
С	0.01pF ~ 999.9mF
R, X, Z	$0.0001\Omega \sim 99.99 M\Omega$
D	0.0001 ~ 9.999
Q	0.0001 ~ 999.9
θd	-179.99° ~ 179.99°
θr	-3.1416 ~ 3.1416
%	-999.9% ~ 999.9%

Table 2

4 JK826	Measurement Range
Parameter	MMeasurement Ranger
L	0.001µH ~ 999.9H
С	0.001pF ~ 999.9mF
R, X, Z	0.0001Ω ~ 99.99MΩ
D	0.0001 ~ 9.999
Q	0.0001 ~ 999.9

θd	-179.99° ~ 179.99°
θr	-3.1416 ~ 3.1416
%	-999.9% ~ 999.9%

2.3 Test Signal

2.3.1 Test Signal Frequency

JK824: 100Hz, 120Hz and 1 kHz JK825: 100Hz, 120Hz, 1 kHz and 10 kHz JK826: 100Hz, 120Hz, 1 kHz, 10 kHz and 100 kHz Frequency: Accuracy: 0.02%

2.3.2 Test Signal Level

0.6Vrms Accuracy: ±10%±2 mV

2.3.3 Output Impedance

100Ω, Accuracy: 5%

2.4 Main Functions

2.4.1 Correction

OPEN/SHORT correction:

Eliminates measurement errors due to stray parasitic impedance in the test fixtures.

2.4.2 Comparator (Sorting Function)

One set of comparator sorting for primary parameters.

2.4.3 System Setup

- Keypad Lock Function
- Data Hold Function
- Switch in Both Chinese and English
- Data File will Be Saved Automatically
- Touch Screen Setup
- Power Saving Mode

2.4.4 Interface

USB Host Port:

USB high-speed mode: 48 MHz, USD-HID Protocol, ASCII Transit.

3. Startup

17

Table 3	3-1	Description of the Front Panel	
	1	TFT-LCD Screen	
	2	Select Keys	
3 MEAS Measurement Key—Enter Measurement Page (Page 22: Measurement Page)			
	4	SYST System Key ——Enter System Setting Page (Page 30: System Setting Page)	
	5 Power On/Off Battery Charging Indicator		
	6	5-Terminal Test Slot	
	7	3-Terminal Test Slot	
	8	Background Brightness—30%,50%,70%, 100% Unlock the Keypad Lock	
	9	HOLD Data Hold Function—DH on, the data is hold in system. USB: {YST:HOLD <on 0="" 1="" off="" =""></on>	
	10	SETUP Enter Setup (Page 25: 5 [SETUP])	

3.2 LCD Screen

Figure 3-2 LCD Screen

Table 3-2

LCD Screen descriptions

1	The Page Title
2	The Blue fields are label; the yellow fields are list box.
3	Primary Parameter Results
4	Sub Parameter Results
5	Help and message information
6	Function Area, Use the select keys to select
7	Comparator Results,

	Green and P: Pass, Red and F: Fail
	If the comparator was turned off, there's nothing displayed.
8	Battery Percentage and Keypad Lock Indicators

3.3 Interfaces

Figure 3-3 Interface panel

3.4 External Power and Battery

The Battery can only be charged by Power Adapter JKL909.

While using the external power supply, the power adapter is also charging the battery.

Figure 3-4 Power Adapter

3.4.1 Charge Li Battery

When the battery power is low, you could use the power adapter to charge the battery. The Power key is orange indicating while charging the battery.Figure 3-5 Charging LED (Orange)

Attention!

The key is also orange which charging even when the LCR meter is off previously.)

3.5 Power up

Press the Power key softly to start it.

3.6 Unknown Terminals Slot

Two Kinds of Test Slot: 3-Terminal and 5-Terminal JK824/825/826 All Equipped with L501C Kelvin Clip JK826 also equipped with L508B SMD Clip.

Figure 3-6 Unknown Terminals

1 The test terminal can NOT be connected into a live circuit 2 The capacitor must be discharged.

3.6.1 Clips and Cables:

Using clip or cable from other brands may cause mistakes After a long time ($1\sim2$ Years), the surface of the accessories may be damaged, which will lead some inaccuracy.

Attention! Without clip or cable, the test result may not be stable.

4. [MEAS DISPLAY] Page

This section includes all measure result display information.

At any time, you can enter Meas Display page by press [MEAS]key. USB-HID Communication Command: DISP:PAGE MEAS]

4.1 <MEAS DISPLAY>

Press[MEAS], enter[MEAS DISPLAY]PAGE.

Measurement settings

- Primary Parameter
- Sub Parameter
- Frequency-Test Frequency
- Range Auto, Hold
- Speed
- Equivalent Mode Auto, Serial and Parallel

Figure 4-1 <MEAS DISPLAY> Page

4.1.1 Measurement Function [FUNC A] [FUNC B]

The JK826/825/824 simultaneously measure 2 components of the complex impedance (parameters) in one measurement cycle. These include primary parameter and secondary parameter

USB Command: FUNC:MAIN <C|L|R|Z|AUTO>

Primary Parameters [FUNC A]: Table 4-1 Primary Parameters

51102	7/023/020	Tranunciu													
	С	L		R		Ζ		Auto							
	Sub Pa	rameters	FUNC B	:						I					
Table 4	4-2 Sub Pa	rameters													
	Off	Auto	Auto D Q ESR $ heta d$ $ heta r$ X												
	You can set sub parameters off.														
	When sub parameter is Auto, it will be selected according to primary							y							
	parame	ter.													
	Measu	rement an	d Monitor	paramete	r desc	ripti	ons								
Table 4	4-3 Param	eters deso	criptions						e.	1					
	Paramete	er Descr	iption		-			, Ø	10	N					
	Cs	Capac	itance val	lue measu	red us	sing	the series	equivale	nt cire	cuit					
	Cn	Canac	itance val	ue measu	red us	ing	the naralle	l equivale	nt cire	mit					
	Cp	model		ue measu	icu us	шş	ine purane	i equivale		Juit					
	Ls	Induc	tance valu	ie measur	ed us	ing	the series	equivaler	nt cire	cuit					
		mode													
	Lp	Induc	Inductance value measured using the parallel equivalent circuit					cuit							
	Da	Equiv	model												
	KS	eireui	Equivalent series resistance measured using the series equivalent												
		(FSR)													
	Rp	Equiv	alent par	allel resi	stance	m	easured 1	ising the	para	llel					
	110	equiva	alent circu	it model	stande		eusureu (ionig the	puru						
	Ζ	Absol	ute value	of impeda	nce										
	Х	React	ance	1											
	D	Dissip	ation fact	or											
	Q	Quali	ty factor(=	1/D)											
	θr	Phase	radian												
	θd	Phase	angle												
	ERS	Equiv	alent Seria	al Resistar	nce(=F	(s)									
	Procedu	ure of sett	ing the me	asuremen	t funct	tion	[FUNC]			Procedure of setting the measurement function [FUNC]					

Step 1. Press [Meas] key

Step 2. Use the cursor key to select [FUNC] field

Step 3. Use the select keys to select measurement function.

4.1.2 Test Signal Frequency [FREQ]

JK824: 100Hz, 120Hz and 1 kHz JK825: 100 Hz, 120 Hz, 1 kHz and 10 kHz JK826: 100 Hz, 120 Hz, 1 kHz, 10 kHz and 100 kHz Frequency Accuracy: 0.02%

Tips 120 Hz accurate frequency is 120.048 Hz, frequency accuracy is

23

0.05%

USB Command: FREQ <100|120|1k|10k|100k>

Procedure of setting test frequency:

Step 1	Press[MEAS]key to enter <meas display=""> page</meas>
Step 2	Use the cursor key to select[FREQ]field
Step 3	Select the frequency by soft key
Impedanc	e Range [RANGE]
4-4 Au	to Range and Range Hold
D	D C

4.1.3 Impedance Range [RANGE]

Auto Range and Range Hold Table 4-4

F	Range		Pros	Cons
I	Auto	Automatically select the best range acc ording to impedance Range is automatically set.	Very convenient	Test speed is slower than manual ranging, especially in lower frequencies (100Hz and 120Hz)
ŀ	Hold	The instrument will always use the user-specified range	Highest speed	Set the range previously

Five Range: 30Ω , 100Ω , $1k\Omega$, $10k\Omega$ and $100k\Omega$.

Table 4	4-5 Range	No	1
	Range No.	Range	Measurement Range
	4 6	10Ω	$0\Omega \sim 100\Omega$
	3	100Ω	$100\Omega \sim 1k\Omega$
	2	1kΩ	1kΩ ~ 10kΩ
5		10kΩ	10kΩ ~ 100kΩ
~	0	100kΩ	100kΩ ~ ∞

■ Procedure of setting the range:

Step 1	Press [MEAS] key to enter <meas display=""> page</meas>			
Step 2	Use the cursor key to select [RANGE];			
Step 3	Auto Auto ranging			
	Hold Current range is hold			
	INCR+ Increase			
	DECL-	Decline		

4.1.4 Measurement Speed [SPEED]

SLOW and FAST can be selected for JK826/825/824 SLOW mode will result in more stable and accurate measurement result. USB Command: APER <SLOW|FAST>

Procedure for setting measurement speed					
Step 1	Press[MEAS]key to enter <meas display=""> page</meas>				
Step 2	Use the cu	Use the cursor key to select[SPEED]			
Step 3	SLOW 1.5 times/second				
	FAST	4 times/second			

4.1.5 Equivalent Circuit [EQU]

Two kinds of equivalent circuits: serial and parallel. If you are not sure which one to choose, select Auto. The equipment will select the tight one. USB Command: FUNC:EQU <SERIAL|PARALLEL|AUTO>

Procedure	re of setting eq	uivalent circuit:			
Step 1	Press [ME	Press [MEAS] key to enter < Meas Display > page			
Step 2	Use the cu	Use the cursor key to select [EQU MODE] field			
Step 3	Auto	Auto Selected by system automatically			
	Parallel	Parallel equivalent circuit			
	Serial	Serial equivalent circuit			

5. [SETUP] Page

This section includes all setup functions At any time, press [SETUP]to enter <SETUP> page. USB-HID Command :DISP:PAGE SETUP

5.1 <SETUP> Page

In < SETUP> page, the Instrument does not display any results, testing is not in progress.

The setup includes

- Primary Parameters [FUNC A]
- Sub Parameters [FUNC B]
- Frequency [FREQ]
- Range Auto, Range Hold [RANGE]
- Speed [SPEED]
- Equivalent Circuit [EQU MODE]
- Comparator [COMP]
- Nominal Value [NOMINAL]
- Tolerance [TOL]
- User Correction [OPEN CORR] [SHORT CORR]

The first six settings can also be set in <MEAS DISPLAY> page.

Figure 5-1 <SETUP> page

	FUNC A	С		FUNC B	AUTO	
Ø	FREQ	100.00	Hz	RANGE	AUTO [[3]
1	SPEED	SLOW		EQU MODE	SER	
	COMD	ON		DEED	055	
۰.	NOMINAL	102 74	υF	TOL	0FF 15 0	*
ME						
MEł	IS SETUP P	age				
MEA	is setup p Meas	age SYSTEM		OPEN	SHOR	T

5.1.1 Comparator [COMP]

Comparator formula:

$$To1 = \frac{Rx - Nom}{Nom} \cdot 100\%$$

Rx: Test Value Nom: Nominal Value

USB Command: COMP <ON | OFF | 0 | 1>

■ Procedure to turn[COMP]on:

Step 1	Press[S	Press[SETUP]to enter setup page ;				
Step 2	Select[[Auto Parameters];				
Step 3	Off	Comparator off				
	On	Comparator on				

5.1.2 [BEEP]Set

Use the beep to indicate test result pass or fail. USB Command: COMP:BEEP <OFF | PASS | FAIL>

Procedure	to	set	beep	

Step 1	Press[SETUP]to enter <setup> page</setup>			
Step 2	Select[I	BEEP]		
Step 3	OFF	Turn Beep feature Off		
	Pass	Beep while Pass		
	Fail	Beep while Fail		

5.1.3 Input Nominal Value [NOM]

Three ways to input nominal value:

- 1. Use touch screen[Keypad Input]
- 2. Nominal components measure[Measure Input]
- 3. USB Command: COMP:NOM <Floating Points >
- Procedure to input nominal value:

Step 1	Press [SETUP] ke	ey to enter <setup> page ;</setup>
Step 2	Select[NOMINA]	L]
Step 3	Keypad Input	Use touch screen to type in
	Meas Input	Measure a standard component as nominal
	· · · ·	

How to use touch screen to input nominal value

Figure 5-2 To input nominal by touch screen

NOL	FUNC A FREQ SPEED	C 100.00 SLOW) Hz	FUNC B RANGE EQU MO	AUTO AUTO DE SER)) [3]	
	COMP	0N 192 7		BEEP	0FF	. .	
	HUMINE	102111	ι μr	TUL	13.8	1 %	
	Input \	/alue: [1	* µr 00	IUL	J.e) ∢ (←B	k.sp
4	Input V	/alue: 1	е рг 00 4	5 6	7	- ≪B 	k.sp 9

Step 1	Press [Keypad Input] key
Step 2	Input the nominal value by touch the screen button
Step 3	Select the unit for the nominal value

Tips Touch Screen is still available even it is turned off in system setting.

Input nomi	inal value by measurement
Step 1	Press [MEAS INPUT] soft key
Step 2	Plug a standard component
Step 3	Press [OK] to start the test, the result will be set as nominal value

5.1.4 Input Tolerance Value [TOL]

Press 1%, 5%,10% and 20% as tolerance. Press KEYPAD INPUT key to input tolerance value (%). USB Command: COMP:TOL <Percentage>

Procedure to input tolerance

Step 1	Press [SETUP] key to enter <setup> page</setup>		
Step 2	Select [TOL] field		
Stan 2	KEYPAD	Use touch screen virtual keypad to input	
Step 5	INPUT		
	1%	Set 1%	
	5%	Set 5%	
	10%	Set 10%	
	20%	Set 20%	

5.2 User Correction

There are two corrections: Open correction and Short Correction. Press [SETUP] key and choose OPEN CORR or SHORT CORR by soft key.

It is necessary to execute open correction and short correction.After replacing the test fixture or test cables, you should executeTipsopen correction and short correction again.Usually low ranges need open correction more, high ranges needshort correction more.

5.2.1 Open Correction [OPEN CORR]

Open correction compensates any stray admittance (G, B) USB Command: CORR:OPEN

Figure 5-3 Stray Admittance

[OPEN CORR] function will correct all frequencies. The frequency points may be different in different versions.

Procedure of open correction

Step 1	Press [SETUP] to enter <setup> page</setup>
Step 2	Keep test clip or cable open circuit.
Step 3	Press [OPEN CORR] soft key
	Press [OK] to execute.
Step 4	When correction is done, the data will be saved.
	During correction, press [Cancel]to cancel correction.

5.2.2 Short Correction

Short correction compensates any remaining impedance.

- USB Command: CORR:SHORT
- Figure 5-4 Remaining impedance

6. [SYSTEM CONFIG] Page

This section includes all system information. USB-HID Command: DISP:PAGE SYSTEM

At any time, press [SYST] key to enter [SYSTEM CONFIG] page.

6.1 <SYSTEM CONFIG> page

Following information can be configured in the <SYSTEM CONFIG> page.

- System date and time configuration [DATE/TIME]
- LANGUAGE
- FILE
- TOUCH PANEL
- BRIGHTNESS
- DIM DISPLAY
- APO Auto Power Off

Figure 6-1 <SYSTEM CONFIG> Page

6.1.1 [LANGUAGE]

You can switch system language in both Chinese and English.

Procedure to change language

Step 1	Press [SYST] key to enter <system config=""> page.</system>	
Step 2	Select[LANGUAGE]	
Step 3	中文 (CHS)	Switch into Chinese
	ENGLISH	Switch into English

6.1.2 [FILE]

■ Procedure of file setting

Step 1	Press [SYST] key to enter <system config=""> page.</system>
Step 2	Select [FILE	[] field
Step 3	AUTO	All parameters set by user will be saved in system.
	IGNORED	The parameters will be lost after power off
	SAVE	All parameters set by user will be saved in
	NOW	system.

6.1.3 [TOUCH PANEL]

The LCR meter can work well without touch panel. But you cannot type number without touch panel. When you need to input numbers, the touch panel will be activated even it is shut down in system setting.

Procedu	re of setting touch	panel
Step 1	Press [SYST] k	key to enter <system config=""> page.</system>
Step 2	Select [TOUCI	H PANEL] field
Step 3	ENABLE	Enable touch panel
	DISABLE	Disable touch panel
0	CALIBRATE	Calibrate touch panel
	RESET	Reset touch panel data

Procedure to calibrate touch panel

Tips

Tips

You will need a screen pen to calibrate touch pane. Do not use your finger!

Step 1	Press[SYST]key to enter <system config=""> page.</system>
Step 2	Select[TOUCH PANEL]soft key
Step 3	Select[CALIBRATE]soft key

Step 4	Use a screen pen to click screen softly to start calibration (Tap the middle of the circle with a pen. 35% (
	Touch Panel Calibration Running	
Step 5	Tap the middle of the circle with a pen on Left-Up corner. Then tap the middle of the circle with a pen on the Right-Bottom corner to finish the calibration.	
Step 6	Click on the screen softly to exit.	

6.1.4 [BRIGHTNESS]

Four degrees of brightness 30%, 50%, 70%, 100%

	If powered by external power, the brightness is 100%.
Tips	If powered by battery, the low brightness can make
	the meter work longer.

Also, press [*]to change the brightness. Figure 6-2 The Brightness key

Procedure to change brightness

Step 1	Press [SYST] key to enter <system config=""> page.</system>						
Step 2	Select [BRIGHTNESS] field.						
Step 3	30% 30% of full brightness						
	50%	50% of full brightness					

70%		70% of full brightness				
	100%	Full brightness				

6.1.5 DIM DISPLAY [DIM]

■ Procedure to dim display:

Step 1	Press [SYST] I	Press [SYST] key to enter <system config=""> page.</system>					
Step 2	Select [DIM D	Select [DIM DISPLAY]					
Step 3	5 minutes	5 minutes 5 minutes later, brightness becomes 30%					
	10 minutes	minutes 10 minutes later, brightness becomes 30%					
	20 minutes	20 minutes later, brightness becomes 30%					
	30 minutes	30 minutes later, brightness becomes 30%					
	OFF	Dim display off					

Tins [.]	Timer	will	be	reset	when	press	any	keys	or	touch
ripo.	screen									

6.1.6 AUTO POWER OFF [APO]

■ Procedure of set auto power off:

Step 1	Press [SYST] to enter <system config=""> page.</system>						
Step 2	Select[APO]	Select[APO]					
Step 3	5 minutes 5 minutes later, power off						
	10 minutes 🥖	10 minutes later, power off					
	20 minutes	20 minutes later, power off					
	30 minutes	30 minutes later, power off					
	OFF	[APO]off					

Tips:

Timer will be reset when press any keys or touch screen.

7. EXAMPLES

This chapter covers basic measurement procedures as well as basic L, C, and R measurement theory. It also offers various measurement hints. After the descriptions of basic measurement procedures, practical measurement examples are shown using JK826

Warning: Do not connect the unknown terminal into a live circuit! Warning: Before test a capacitor, make sure the capacitor is

discharged

7.1 Example

This paragraph describes a practical example of measuring a ceramic capacitor.

In this example, a ceramic capacitor is measured under the following conditions.

- Sample (DUT) : Ceramic capacitor
- Primary parameter[FUNC A]: C
- Sub parameter [FUNC B]: D
 - Test frequency: 1kHz

Step 1	Press Power key to start the instrument to enter <meas display=""> page.</meas>					
Step 2	[FUNC A]:[C] [FUNC B]:[D] [FREQ]:[1kHz] [RANGE]:[AUTO] [SPEED]:[SLOW] [EOU MODE]:[AUTO]					
Step 3	Insert the capacitor into the test slot. If you use test cables, connect the cables to the meter.					
Step 4	 Run [open correction] again after replaced the cables. 1. Press[SETUP]key to enter<setup> page</setup> 2. Press[OPEN CORR]soft key 3. Keep test cable open circuit. 4. Press[OK] Run short correction 					

	If you are using test cables, then connect them together.					
	If you are using test slot, insert the jumper to shorten the					
	circuit.					
	Press [SHORT CORR], press [OK] to start.					
Step 5	Press[MEAS]key to enter <meas display=""> page</meas>					
Step 6	Connect capacitor to test cables or insert it into test slot.					
Step 7	Read the test result.					

Figure 7-1 Example

8. Remote Control

This chapter provides the following information to remotely control the JK826/825/824 via the USB interface.

8.1 USB-HID

The USB-Serial Interface allows you to connect JK824/825/826 to a USB port on you PC.

You needn't to install a driver in Windows system.

Figure 8-1 The Jinko USB logo in windows device manager

8.2 Programming guide

The instrument goes along with data communication and acquisition software. You can also go to our website: <u>www.Jinko.com to</u> download.

Tips:

If you want to program the software by yourself, you need to know some basic knowledge about USB and USB-HID. Go to www.usb.org to find out more.

Basic API functions:

```
CreateFile(
devDetail->DevicePath,
ENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL);
```

Use CreateFile to open HID equipment, equipment communication channels can be found through function SetupDiGetInterfaceDeviceDetail.

```
• ReadFile(
```

```
hDev,
       recvBuffer,
       IN REPORT LEN,
       &recvBytes,
       &ol);
     Use ReadFile to read HID equipment. Report based on the data
     fransferred from IN.
   • WriteFile(
       hDev,
       reportBuf,
       OUT REPORT LEN,
       &sendBytes,
       &ol);
      WriteFile is used to transfer an output report to HID equipment.
   • Communication Parameters
     VIP: 0825
     PID: 0826
     Packet size: 64bits
             Any problems in programming, please contact our tech
Tips:
             department, you can send an email to tech@Jinko.com.
```

USB is always available, you needn't set any parameters.

8.3 Command set

Ti

8.3.1 Command packet

	Use 64 bit	ts/pack to transfer da	ta; every USB-H	ID command is 1 p	ack.
	0	Command packets ha	ave a fixed form	at, the user must f	ollow
	o t	he format agreed by	the instrument of	of writing, and othe	erwise
nc.	e Cit	t is impossible to est	ablish communic	ation.	
US.	T	The command word i	s case-insensitive	Э.	
	V B	each command pack	et contains the fir	st 60 bytes of chec	ksum,
\sim	f	ill in the last four by	tes.		
	PC comm	and pack format(a C	language-define	ed pack structure):	
	#define	e program pack	(1)		
	typedef	fpacked str	uct		
	{				
	uint	cSize;	//packet si	ze 4bytes	=60
	char	<pre>sHeader[24];</pre>	//command 2	4bytes	
	char	sPara[28];	//parameter	28bytes	
	uint	nSignature;	//signature	4bytes	
	uint	nChecksum;	//Checksum	4bytes	
	} TUSB	CMD;			

Here

#define program pack()

cSize:	60
nSignature:	0x88805550
sCmd,sPara:	reference at SCPI set
nChecksum:	32 checksum
A complete send cSize: (sHeader: IDN?	command pack(from PC) as follows 0x0000003C, sPara: blank)
nSignature: (0x88805550
nChecksum: (0x00002BC1

As command pack format and number of bits are fixed, so command words and parameters which are not qualified with the specified number of bytes must be filled hexadecimal. HEX: 0x00.

-		L		-	·		-	-							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00	00	00	40	49	44	4E	3F	00	00	00	00	00	00	00	00
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
00	00	00	00	00	00	00	00	88	80	55	50	00	00	2в	C1

Table 8-1 A complete command pack in Hex format.

Instrument response pack is 64 bytes, not sufficient for 0x00 fill out. (Not ASCII "0")

A response pack (from instrument):

ASCII format: JK826, REV A1.0, 00000000, Jinko Instruments Inc.

To test instrument USB-HID, we have free "Jinko HID communication tester" software, you can download from:<u>www.Jinko.com</u>

8.3.2 Notation Conventions and Definitions

A definition is not a part of a command, just used in interpretation and is not included in transfer.

The following conventions and definitions are used in this chapter to describe USB-HID operation

Table 8-2 Notation Conventions and Definitions

 \sim Name of a parameter

[]	The content is optional
	Select from several options

8.3.3 Parameter types

Parameters may be of four types as follows.

Table 8-3 Available data type

Format		Samples
<nr1></nr1>	Integer	100,+100,-100
<nr2></nr2>	Rational	1.23,+1.23,-1.23
<nr3></nr3>	Floating-point	1.23E4, +1.23E4,-1.23E4,-1.23e-4
<nr4></nr4>	Floating-point with magnification	1.23K,1.23N,1.23U (magnification in following Table)

Table 8-4 Magnification

Definition	Suffix
1E18 (EXA)	EX
1E15 (PETA)	PE
1E12 (TERA)	Т
1E9 (GIGA)	G
1E6 (MEGA)	MA
1E3 (KILO)	K
1E-3 (MILLI)	М
1E-6 (MICRO)	U
1E-9 (NANO) 🧥	N
1E-12 (PICO)	Р
1E-15 (PEMTO)	F
1E-18 (ATTO)	A

8.4 Command Reference

All commands in this reference are fully explained and listed in the following functional command order.

- DISP Display subsystems
- FUNC Function subsystem
- FREQ Frequency subsystem
- APER Speed subsystem
- FETC? Result check subsystem
- COMP Comparator subsystem
- CORR Correction subsystem

40 JK824/825/826 Handheld LCR Meter

- SYST System setting subsystem
- IDN? Version check subsystem
- RST Hot start subsystem
- ERR Error subsystem

8.4.1 DISP Subsystem

■ DISP:PAGE <meas|setup|system>

	To change screen page	2
sHeader	DISP:PAGE	6.0
sPara	<meas setup system></meas setup system>	10%N
	meas:MEAS DISPLAY	e a
	setup:SETUP	C OY
	system:SYSTEM CONFIG	

■ DISP:PAGE?

	To check the current page
sHeader	DISP:PAGE?
sPara	6°. C.
Response	<meas setup system></meas setup system>
	meas:MEAS DISPLAY
	setup:SETUP
	system:SYSTEM CONFIG

■ DISP:LINE <string>

	To display byte serial	
sHeader	DISP:LINE	
sPara	<string> display byte serial,due to the restrict length of sPara,some content is can not displayed.</string>	

8.4.2 FUNC Sub System

FUNC:MAIN <C|L|R|Z|AUTO>

<u> </u>	To set primary parameter
sHeader	FUNC:MAIN
sPara	<c l r z auto></c l r z auto>

■ FUNC:MAIN?

	To check current primary parameter
sHeader	FUNC:MAIN
sPara	
Response	<c l r z auto></c l r z auto>

■ FUNC:MAIN:FACT?

Remote Control

41

	To check main factor when primary parameter is set Auto	
sHeader	FUNC:MAIN:FACT?	
sPara		
Response	<c l r z></c l r z>	

■ FUNC:SUB <OFF|AUTO|D|Q|ESR|THR|THD|X>

	To set primary parameter	
sHeader	FUNC:SUB	N.
sPara	<off auto d q esr thr thd x></off auto d q esr thr thd x>	5.5
■ FUNC:SUB?		elan
	To aboal aurrent primary parameter	0.0

■ FUNC:SUB?

	To check current primary parameter
sHeader	FUNC:SUB?
sPara	
Response	<off auto d q esr thr thd x></off auto d q esr thr thd x>
■ FUNC:SUB:FACT?	

■ FUNC:SUB:FACT?

	To check sub factor when primary parameter is set Auto
sHeader	FUNC:SUB:FACT?
sPara	
Response	$<$ D Q Rs θ r θ ° X>

■ FUNC:EOU <SERIAL|PARALLEL|AUTO>

	To set equivalent mode
sHeader	FUNC:EQU
sPara	
.0?.1	SERIAL
	PARALLEL

■ FUNC:EOU?

- 63		To set equivalent mode
	sHeader	FUNC:EQU?
	sPara	
\sim	Response	<serial auto="" parallel="" =""></serial>

■ FUNC:EQU:FACT?

	To set equivalent mode under Auto
sHeader	FUNC:EQU:FACT?
sPara	
Response	<serial parallel="" =""></serial>

JK824/825/826 Handheld LCR Meter 42

	To set the range
sHeader	FUNC:RANG
sPara	<0 1 2 3 4>
	0~4 means the number of the range

■ FUNC:RANG?

	To Query the number of current range	
sHeader	FUNC:RANG?	\sim
sPara		5.5
Response	<0~4>	18-1N

■ FUNC:RANG:AUTO <ON|OFF|1|0>

	To set range mode	
sHeader	FUNC:RANG:AUTO	2 5 1
sPara	<on off 1 0></on off 1 0>	
■ FUNC:RANG:AUTO?		

■ FUNC:RANG:AUTO?

	To query current range mode
sHeader	FUNC:RANG:AUTO?
sPara	
Response	<on off></on off>

8.4.3 FREQ Sub System

FREO <100|120|1k[10k]100k]>

To set test frequency
FREQ
<100 120 1k 10k 100k>
Frequency can accept any numeric format, but the data must
be the frequency value of the meter. Illege value will be
replaced by a close legal value as follows:
100,120,1k (JK824)
100,120,1k,10k (JK825)
100,120,1k,10k,100k (JK826)

■ FREQ?

	To check current frequency
sHeader	FREQ?
sPara	
Response	<100 120 1000 10000 100000>

8.4.4 APER Speed Sub System

$\blacksquare APER < SLO$	W FAST>
	To set test speed
sHeader	APER
sPara	<slow fast></slow fast>

■ APER?

	To query current test speed	18
sHeader	APER?	07. N
sPara		
Response	<slow fast></slow fast>	0500

8.4.5 FETC? Sub System

■ FETC?

-1210.	
	To query test result
sHeader	FETC?
sPara	
Response	<primary a,="" b="" parameter="" result="" sub=""></primary>
	The system will retrieve NR3 type parameter test resuls.
	If sub parameter is off, it will retrieve +0.000000e+00
Examples	+7.929158e-15,+0.000000e+00

8.4.6 COMP Comparator sub system

• $COMP < ON$	OFF 0 1>
~	To turn on/off comparator
sHeader	COMP
sPara	<on 0="" 1="" off="" =""></on>

■ COMP?

N.C.X	To query the status of comparator
sHeader	COMP?
sPara	
Response	<on off></on off>

■ COMP:BEEP < OFF | PASS | FAIL>

	To turn on/off beep
sHeader	COMP:BEEP
sPara	<off fail="" pass="" =""></off>
	PASS
	FAIL

■ COMP·REEP?

	•
	To query status of beep
sHeader	COMP:BEEP?
sPara	
Response	<off fail="" pass="" =""></off>

■ COMP:NOM <NR1|NR2|NR3|NR4>

	To input nominal value under current parameters
sHeader	COMP:NOM
sPara	<nr1 nr2 nr3 nr4></nr1 nr2 nr3 nr4>
	To guary nominal value under aurrent perameters

■ COMP:NOM?

	To query nominal value under current parameters
sHeader	COMP:NOM?
sPara	
Response	<nr3></nr3>
Example	2.00000e-09

COMP:TOL <nr1 nr2 nr3></nr1 nr2 nr3>		
		To input percentage deviation
sHead	er	COMP:TOL
sPara		<nr1 nr2 nr3></nr1 nr2 nr3>
		Needn't to input %.
Examp	ole	COMP:NOM 2 // 2%

■ COMP:TOL?

.021	To query percertage deviation
sHeader	COMP:TOL?
sPara	
Response	<nr2></nr2>
Example	10.0

8.4.7 Correction subsystem

■ CORR:OPEN

	To execute open correction
sHeader	CORR:OPEN
sPara	

■ CORR:SHORT

	To execute short correction
sHeader	CORR:SHORT
sPara	

8.4.8 SYST System Sub System

■ SYST:KEYL	<on 0="" 1="" off="" =""></on>
	To lock/unlock keypad and touch screen
sHeader	SYST:KEYL
sPara	<on 0="" 1="" off="" =""></on>

Tips: When the keypad and screen is locked, press[*]to unlock ! Power key cannot be locked

■ SYST:HOLD	<on 0="" 1="" off="" =""></on>	(e) (V
	To hold data on the screen	SUN N
sHeader	SYST:HOLD	NAC)
sPara	<on 0="" 1="" off="" =""></on>	NY N

Tips:When the screen is data hold, a red sign DH will be displayed
on screen.This command is only available on <MEAS DISPLAY> page.

8.4.9 IDN? Subsystem

■ IDN?

- 12111	
	To check version information
sHeader	IDN?
sPara	
Response	JK826,REV A1.0, <serial number="">,Jinko Instruments Inc.</serial>

8.4.10 RST Subsystem

■ RST

	To start in heat
sHeader	RST
sPara	

8.4.11 Error Subsystem

■ ERR?

	To check the message sent previously	
sHeader	ERR?	
sPara		
Response	In the following Table	

Table 8-5 The Error Code and message

0, No error

1, Bad command

- 2, Parameter error
- 3, Missing parameter
- 4, Invalid multiplier
- 5, Numeric data error
- 6, Value too long
- 7, Invalid command

8.5 **Command List**

Table 8-6 All US	SB Commands
------------------	-------------

	as	
sHeader	sPara	Response
DISP:PAGE	MEAS SETUP SYSTEM	Change display page
DISP:PAGE?		Ouery current display page
DISP:LINE	STRING	Display String on screen
FUNC:MAIN	C L R Z AUTO	Set primary paramete [FUNC A]
FUNC:MAIN?	(A	Query primary parameter
FUNC:MAIN:FACT?		Query main parameter factor
FUNC:SUB	OFF AUTO D Q ESR THR TH D X	Set sub parameter [FUNC B]
FUNC:SUB?		Query sub parameter
FUNC:MAIN:FACT?	00 V	Query sub parameter factor
FUNC:EQU	SERIAL PARALLEL AUTO	Set equivalent mode
FUNC:EQU?	129551	Query equivalent mode
FUNC:EQU:FACT?		Query equivalent mode
FUNC:RANG	0~4	Set range
FUNC:RANG?		Query range number
FUNC:RANG:AUTO	ON OFF 1 0	Set range AUTO
FUNC:RANG:AUTO?		Query range status
FREQ	100 120 1000[10000 100000]	Set test frequency
FREQ?		Query test frequency
APER	SLOW FAST	Set test speed
APER?		Query test speed
FETC?		Query test result
COMP	ON OFF 1 0	Turn on/off comparator
COMP:BEEP	OFF PASS FAIL	Turn on/off beep
COMP:NOM	<floating-point></floating-point>	Input nominal value
COMP:NOM?		Check nominal value
COMP:TOL	<floating-point></floating-point>	Input percentage value
COMP:TOL?		Check percentage value
CORR:OPEN		Execute open correction
CORR:SHORT		Execute short correction
IDN?		Query Version information
RST		Execute Hot Start
ERR?		Ouery Error code

9. Specification

This chapter describes the specifications and supplemental performance characteristics of the JK826/825/824:

- Specifications
- Dimension

9.1 General Specification

	Specification	1	
	Primary Para	ameters	C, L, R, Z, AUTO
Sub Parameters			OFF, AUTO, D, Q, ESR, θr,θ°,Χ
Display			50000 readers
	Basic Accuracy		0.2%
	Equivalent Mode		Serial, Parallel and AUTO
	Ranging		Auto and Manual
	Speed		Slow 1.5 times/second, Fast 4 times/second
	т. <i>і</i>	JK824	100Hz, 120.048Hz, 1kHz
	Test	JK825	100Hz, 120.048Hz, 1kHz, 10kHz
	Frequency	JK826	100Hz, 120.048Hz, 1kHz, 10kHz, 100kHz
	Test Signal I	Level	0.6 Vrms, Accuracy: 10%
	Signal Resistance	Source	100Ω
	Correction		Open and short correction
	Comparator		Primary parameter percentage, Beep
	Test termina	1	5 terminals and 3 terminals
	Interface		USB-HID
- 9	Features		
C V	Display		TFT-LCD Display, 2.8 inch with touch screen
	Brightness		30%,50%,70%,100%
Power-save Power			Adjustable brightness and auto power off time
	Battery		Rechargeable Li Battery: ATL805
			JKL909
	AC Adapter		90V~250VAC
			9VDC,1A
	Max power		0.9W
	Standby Cur	rent	50µA max

8 JK824/825/826 Handheld LCR Meter

Battery working	8h @100% brightness			
time	11h @ 50% brightness:			
unne	14h @ 30% brightness			
Charge time	About 2h			
Lower brightness	5min/10min/20min/30min/OFF			
Lower brightness	*Power by battery			
Auto nouver off	5min/10min/20min/30min/OFF			
Auto power off	*Powered by battery			
General	5.0			
Temperature	0°C~40°C			
Humidity	≤ 90%RH			
Altitude	2000m			
Storage Temperature	-10°C~70°C			
Weight	350g			
Safety and	IEC 61010 1:2001			
electromagnetic	EC 61226 2 1.2001			
compatibility	IEC 01520-2-1.2005			

9.2 Accuracy

Accuracy is defined as meeting all of the following conditions.

Temperature: $23^{\circ}C\pm 5^{\circ}C$ Humidity: $\leq 65\%$ R.H. Correction: open and short correction Test terminal: Internal Terminals Slot Equivalent mode: Auto Rate: Slow Warming time: >30 min A 1-year calibration cycle

Test level accuracy:	10%
Test frequency accuracy ^{*1} :	0.02%
Basic Accuracy:	0.2%

Tips:120Hz is nominal frequency, actual frequency is 120.048 Hz,
accuracy is 0.05%

9.2.1 C and D

■ 100Hz/120Hz

Specification

Range	Display range	Accuracy Ce	Accuracy De
20mF	5.0000mF - 20.000mF	5.0%+5bit	0.0500
5mF	500.0µF - 4.9999mF	1.0%+3bit	0.0100
500µF	50.00µF - 499.99µF	0.3%+2bit	0.0030
50µF	5.000µF – 49.999µF	0.2%+2bit	0.0020
5µF	500.0nF - 4.9999µF	0.2%+2bit	0.0020
500nF	50.00nF – 499.99nF	0.2%+2bit	0.0020
50nF	5.000nF - 49.999nF	0.3%+3bit	0.0030
5nF	0pF – 4.9999nF	1.2%+5bit	
■ 1kHz			
Range	Display range	Accuracy Ce	Accuracy De
1mF	500.0µF – 999.9mF	2%+5bit	0.0200
500µF	50.00µF – 499.99µF	1%+3bit 🛛 🖉	0.0100
50µF	5.000µF – 49.999µF	0.3%+2bit	0.0030
5µF	500.0nF - 4.9999µF	0.2%+2bit	0.0020
500nF	50.00nF – 499.99nF	0.2%+2bit	0.0020
50nF	5.000nF - 49.999nF	0.2%+2bit	0.0020
5nF	500.0pF - 4.9999nF	0.3%+3bit	0.0030
500pF	0.0pF – 499.9pF	1.2%+5bit	
■ 10kHz	20	22	
Rnge	Display range	Accuracy	Acuracy De
100µF	50.00µF – 99.99µF	3.0%+5bit	0.0300
50µF	5.000µF – 49.999µF	1.0%+3bit	0.0010
5μF	500.0nF - 4.9999µF	0.3%+2bit	0.0030
500nF	50.00nF - 499.99nF	0.2%+2bit	0.0020
50nF	5.000nF - 49.999nF	0.2%+2bit	0.0020
5nF	500.0pF - 4.9999nF	0.2%+2bit	0.0020
500pF	50.00pF – 499.9pF	0.3%+3bit	0.0030
50pF	0.00pF – 49.99pF	1.2%+5bit	
■ 100kHz			
Range	Display Range	Acuracy Ce	Accuracy De
10µF	5.000µF – 9.999µF	6.0%+20bit	0.0600
5µF	500.0nF – 4.9999µF	3.0%+10bit	0.0300
500nF	50.00nF - 499.99nF	0.8%+5bit	0.0080
50nF	5.000nF - 49.999nF	0.5%+2bit	0.0050
5nF	500.0pF - 4.9999nF	0.5%+2bit	0.0050
500pF	50.00pF – 499.99pF	0.8%+2bit	0.0080
50pF	5.000pF – 49.999pF	1.2%+5bit	0.0120
5pF	0.000pF – 4.999pF	3%+10bit	

9.2.2 L and Q

■ 100Hz/120Hz

Range	Display Range	Accuracy Ce	Accuracy De
1000H	500 0H - 1000 0H	1.0%+3hit	0.0100
500H	50 00H - 499 99H	0.3% + 2 bit	0.0030
50H	5 000H - 49 999H	0.3%+2bit	0.0020
5011 5H	5.000 mH = 4.9999 H	0.2%+2bit	0.0020
500mH	500.0mH $- 499.99$ mH	0.2%+2bit	0.0020
50mH	50.00mH $- 49.99$ mH	0.2%+2bit	0.0020
5mH	0uE / 000mE	1.4% + 5bit	0.0050
1kHz	0μ1 – 4.777.00	1.470+501	
Range	Display Range	Accuracy Ce	Accuracy De
100H	50 00H -99 99H	1.0%+3bit	0.0100
50H	5 000H - 49 999H	0.3%+2bit	0.0030
5H	500 0H – 4 9999H	0.2% + 2bit	0.0020
500mH	50 00H – 499 99mH	0.2%+2bit	0.0020
50mH	5.000H – 49.999mH	0.2%+2bit	0.0020
5mH	500.0µH – 4.9999mH	0.4%+3bit	0.0040
500uH	0.0µH – 499.9µH	1.4%+5bit	
10kHz	02	C	
Range	Display Range	Accuracy Ce	Accuracy De
1000mH	500.0mH - 999.9mH	0.8%+3bit	0.0080
500mH	50.00mH - 499.99mH	0.2%+2bit	0.0020
50mH	5.000mH - 49.999mH	0.2%+2bit	0.0020
5mH	500.0µH – 4.9999mH	0.2%+2bit	0.0020
500µH	50.00µH – 499.9µH	0.4%+3bit	0.0040
50µH	0.00µH – 49.99µH	1.4%+5bit	
100kHz	· · ·		F
Range	Display Range	Accuracy Ce	Accuracy De
100mH	50.00mH – 99.99mH	1.2%+5bit	0.0120
50mH	5.000mH - 49.999mH	0.8%+2bit	0.0080
5mH	500.0µH – 4.9999mH	0.5%+2bit	0.0050
500µH	50.00µH – 499.99µH	0.5%+2bit	0.0080
50µH	5.000µH – 49.999µH	0.8%+5bit	0.0120
5µH	0.000µH – 4.999µH	2.5%+10bit	
Noted*1:	Quality Qe		per .
When Q.	$D_o \leq 1, Q_o = \pm \qquad \qquad$		
• X	$1 \mp Q_x \cdot D_e$		

Q_x is unknown value

9.2.3 Z and θ

■ 100Hz, 120Hz, 1kHz, 10kHz

	,		
Range	Display Range	Accuracy Ze	Accuracy θe
10ΜΩ	5.000MΩ - 10.000MΩ	3.0%+5bit	1.7°
5ΜΩ	500.0kΩ - 4.9999MΩ	1.2%+3bit	0.7°
500kΩ	50.00kΩ - 499.99kΩ	0.3%+3bit	0.2°
50kΩ	5.000kΩ - 49.999kΩ	0.2%+2bit	0.1°
5kΩ	500.0Ω - 4.999kΩ	0.2%+2bit	0.1°
500Ω	50.00 - 499.99Ω	0.2%+2bit	0.1°
50Ω	5.000Ω - 49.999Ω	0.3%+3bit	0.2°
5Ω	0.5000Ω - 4.9999Ω	1.0%+3bit	0.6°
0.5Ω	0.0000Ω - 0.4999Ω	3.0%+3bit	
100kHz			
Range	Display Range	Accuracy Ze	Accuracy θe
10ΜΩ	5.000ΜΩ - 10.000ΜΩ	8.0%+20bit	4.5°
5ΜΩ	500.0kΩ - 4.9999MΩ	3.0%+10bit	1.7°
500kΩ	50.00kΩ - 499.99kΩ	1.2%+5bit	0.7°
50kΩ	5.000kΩ - 49.999kΩ	0.8%+2bit	0.5°
5kΩ	500.0Ω - 4.999kΩ	0.5%+2bit	0.3°
500Ω	50.00 - 499.99Ω	0.5%+2bit	0.3°
50Ω	5.000Ω - 49.999Ω	0.8%+5bit	0.5°
5Ω	0.5000Ω - 4.9999Ω	2.5%+10bit	1.5°
0.5Ω	0.0000Ω - 0.4999Ω	6.0%+20bit	

9.2.4 ESR 🧷

ESR is equivalent serial resistance (=Rs) ESR: $Rs_e = \pm X_x \cdot \phi_{-e}$ X_x is tested resistance

$$X_x = 2\pi f L_x$$
 or $X_x = \frac{1}{2\pi f C_x}$

$$\phi_e = \theta_e \cdot \frac{\pi}{180}$$

Equivalent parallel resistance:

$$R_{pe} = \pm \frac{R_{px} \cdot \phi_e}{D_x \mp \phi_e}$$

9.3 Demensions

JK824/825/826 User's Guide-English ©2011 Changzhou Jinailian Electronic Technology Co.,Ltd