РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

MHS-5200P/P+

Двухканальный DDS-генератор сигналов

Основные параметры

1. Технология прямого цифрового синтеза (DDS), плата FPGA, низкое энергопотребление;

2. Два выхода, возможность работы в режиме регулируемой фазовой синхронизации;

3. Функция линейного и логарифмического свипирования до 999 секунд;

4. Синусоида, треугольные импульсы, прямоугольные импульсы, пила, нисходящая пила, переменные импульсы, пользовательская форма сигналов;

5. Десять ячеек памяти (M0 ~ M9) для хранения параметров, автоматическая загрузка ячейки M0;

6. Амплитуда выходного сигнала без усилителя мощности: 5mVp-p ~ 20Vp-p, с усилителем мощности: 30mVp-p ~ 30Vp-p;

7. Встроенный прецизионный аттенюатор -20 дБ, минимальное разрешение по амплитуде: 1 мВ;

8. Функция смещения постоянного тока: 120% + 120%;

9. Точность регулировки коэффициента заполнения импульсов: 0.1%;

10. Четыре выхода TTL с фазовым сдвигом;

11. Возможность измерения следующих величин: частот, период, положительная и отрицательная длительность импульса, коэффициент заполнения. Также имеется функция подсчета.

12. Возможность выбора между четырьмя периодами измерения частоты, позволяющими настроить баланс между скоростью и точностью;

13. Все параметрические настройки могут быть выполнены с помощью внутренней калибровки;

14. Высокоэффективные средства связи, полностью открытый протокол связи, простая подготовка к эксплуатации;

15. Возможность использования ПК для управления устройством. Также возможно применение ПК для загрузки в генератор выходного сигнала произвольной формы.

Описание устройства

MHS-5200P/P+ — это генератор сигналов повышенной мощности, созданный на базе генератора MHS-5200A и оснащенный двухканальным усилителем. Он обладает всеми характеристиками модели MHS-5200A. Выходной сигнал делится на два выхода: выходы на передней панели — CH1 и CH2 без усилителя с амплитудой 5mVp-p ~ 20Vp-p, выходы на задней панели — CH1 и CH2 с усилителем и амплитудой 30mVp-p ~ 30Vp-p.

Главной особенностью данного генератора является непрерывная и точная регулировка сигнала цифрового усиления, достигаемая благодаря наличию полностью независимого двухканального усилителя. Выходное напряжение — до 60В, максимальный ток при последовательном соединении — 2 А, максимальная мощность — 30 Вт.

Модель	Полоса пропускания усилителя (синусоида, прямоугольник, и др.)	Полоса пропускания без усилителя (синусоида)	Полоса пропускания без усилителя (прочие формы сигнала)
MHS-5200P (6M)	DC (0 кГц)~ 80 кГц	0 Гц ~ 6 МГц	0 Гц ~ 6МГц
MHS-5200P (12M)	DC (0 кГц) ~ 80 кГц	0 Гц ~ 12 МГц	0 Гц ~ 6 МГц
MHS-5200P (20M)	DC (0 кГц) ~ 80 кГц	0 Гц ~ 20 МГц	0 Гц ~ 6 МГц
MHS-5200P (25M)	DC (0 кГц) ~ 80 кГц	0 Гц ~ 25 МГц	0 Гц ~ 6 МГц
MHS-5200P+ (6M)	DC (0 КГц) ~ 5 МГц	0 Гц ~ 6 МГц	0 Гц ~ 6 МГц
MHS-5200P+ (12M)	DC (0 КГц) ~ 5 МГц	0 Гц ~ 12 МГц	0 Гц ~ 6 МГц
MHS-5200P+ (20M)	DC (0 КГц) ~ 5 МГц	0 Гц ~ 20 МГц	0 Гц ~ 6 МГц
MHS-5200P+ (25M)	DC (0 КГц) ~ 5 МГц	0 Гц ~ 25 МГц	0 Гц ~ 6 МГц

Режимы встроенного модуля питания:

- Полоса пропускания усилителя 0-80 кГц общего типа (MHS-5200P);
- Полоса пропускания широкополосного усилителя 0-5 МГц (MHS-5200P +).

Устройство позволяет использовать различные режимы питания в зависимости от параметров, указанных в таблице:

Параметр	MHS-5200P	MHS-5200P+
Диапазон сигналов	DC (0 кГц) ~ 80 кГц	DC (0 КГц) ~ 5 МГц
Амплитуда выходного сигнала	30mVp-p ~ 30Vp-p	30mVp-p ~ 30Vp-p
Максимальный выходной ток	1 A	300 мА
Максимальная выходная мощность	15 Вт х 2	4,5 Bt x 2
Защита от короткого замыкания на выходе	Есть (ограничение)	Есть (ограничение)
Выходное сопротивление	≦1 Ом	≦1 Ом
Фаза выходного напряжения	В фазе с сигнальной клеммой	С сигнальной клеммой инвертора
Искажение	<1%	<1%
Линейность сигнала	±1 дБ	±1 дБ

Технические характеристики

Таблица 1-1. Спецификация серии MHS-5200P/P+

Характеристики		Параметры		
	Частотный	Синусоидальный сигнал	Нормальный режим: MHS -5200-06M: 0Hz~6MHz; MHS-5200-12M: 0Hz~12MHz; MHS -5200-20M: 0Hz~20MHz; MHS-5200-25M: 0Hz~25MHz.	
		Прямоугольный сигнал	0Hz~6MHz	
	диапазон	Треугольный сигнал	0Hz~6MHz	
		Пилообразный сигнал	0Hz~6MHz	
		Сигнал произвольной формы	0Hz~6MHz	
		TTL сигнал	0Hz~6MHz	
	Выходная модуляция	Свипирование частоты		
	Память	2048 точек		
Ключевые характеристики	Частота дискретизации	200МВыб/с		
	Вертикальное разрешение (по амплитуде)	12 бит		
	Минимальное разрешение по частоте	10мГц		
	Погрешность установки частоты	±5*10 ⁻⁶		
	Точность установки частоты	±1*10 ⁻⁶		
	Диапазон двойного размаха (пик- пик)	5mVp-p~20Vp-р (12MHz или меньше) 5mVp-p~15Vp-р (больше 12MHz)		
	Выходной импеданс	50Ω±10%		
	Минимальный двойной размах	1mVp-p (аттенюатор -20dB) 10mVp-p (без аттенюатора)		

	Точность установки размаха	±0,5% (каждые 5 часов)		
	Погрешность установки размаха	±1% + 10mV (частота 1HHz, 15 Vp-p)		
	Диапазон смещения	-120% ~ + 120% (Коэффициент напряжения смещения и амплитуды)		
	Разрешение по смещению	1%		
	Диапазон фазы	0~359°		
	Разрешение по смещению	1°		
Синусоидальный	Гармонические искажения	40dBc (<1MHz), 35dBc (1MHz~20MHz)		
Сигнал	Погрешность	<0,8% (20Hz~20KHz)		
	Длительность фронта и спада	≤20ns		
Прямоугольный	Погрешность	≤10%		
сигнал	Уровень установки коэффициента заполнения	0%~99.9%		
	Длительность фронта и спада	≤20ns		
TTL	Низкий уровень	<0.3V		
	Высокий уровень	1V~10V		
Произвольные	Количество	16		
формы сигнала	Объем памяти	1KB		
	Режимы	Линейное свипирование, логарифмическое свипирование		
Свипирование	Время	1c~500c		
	Диапазон	Обусловлен настройками параметров свипирования		
	Частотный	Время счета = 10S 0.1HZ - 60MHZ		
	диапазон	Время счета =1S 1HZ - 60MHZ		
		Время счета = 0.1S 10HZ - 60MHZ		
		Время счета =0.01S 100HZ - 60MHZ		
Внешние измерения	Диапазон входного напряжение	0 0.5Vp-p~20Vp-p		
	Счетный диапазон	0~4294967295		
	Счет	Установка функции вручную		
	Измерение ширины	Разрешающая способность – 10ns, максимальная измеряемая ширина – 10с		

	положительных	
	И	
	отрицательных	
	Изменение периода	Разрешающая способность – 20ns, максимальная измеряемая ширина – 20с
	Изменение коэффициента заполнения	Разрешающая способность 0,1%, диапазон от 0,1% до 99,9%
	Входы	1.Ext.IN input (AC сигнал), 2.TTL_IN input (цифровой сигнал)
Варианты	Количество	10
настройки параметров	Расположение	M0-M9
TT 1 V	Интерфейс	Последовательный USB – интерфейс
Интерфеис	Битрейт	57600 bps
	Протокол	Открытый, использует командную строку
Питание	DC	DC 5B
Размеры	Длина * ширина * высота	180*190*71 мм
Bec	-	542 г

2. Описание прибора

Внешний вид

Внешний вид: рисунок 2.1. Описание элементов указано в таблице 2.1.

Таблица 2.1

Номер	Определение	Номер	Определение
1	LCD1602	7	Выход канала
			CH2
2	Индикатор	8	Выходы СН1 и
	состояния		СН2 усиленного
			сигнала
3	Кнопки	9	Разъем питания
	управление		
4	Ручка энкодера	10	USB-разъем
5	Внешний вход	11	Вход/Выход
			TTL
6	Выход канала СН1	12	Выключатель
			питания

Описание показаний на дисплее

Интерфейс LCD-дисплея разделён на две строки, как показано на рисунке 2.2. Описание этих строк в таблице 2.2.

Рисунок 2.2 F00010000.00 Hz WAVE:SINE

Таблица 2.2			
Номер	Описание		
1	Показание частоты		
2	Управляющие функции		

Назначение кнопок

CH1/2	Кнопка перемещения курсора влево для выбора шаговой величины
SET	Кнопка перемещения курсора вправо для выбора шаговой величины
WAVE PgUp	Кнопка Page Up, выбор функции
AMPL PgDn	Кнопка Page down, выбор функции
OK	Кнопка ОК
	Переключение между каналами (CH1 \ CH2)
SHIFT + D	Переключение положения "*" для настройки параметров во второй строке или регулировки частоты в первой строке
	Комбинация кнопок для выбора формы сигнала
SHIFT + PgDn	Комбинация кнопок для изменения размаха выходного сигнала
	Включение / выключение выходов

3. Руководство по эксплуатации

Начало работы

a) проверьте напряжение в сети, прежде чем подключать прибор. Допустимое напряжение 5В. Используйте адаптер питания DC5V, который входит в комплект, или другой адаптер постоянного тока 5В.

б) включите прибор и дождитесь входа в начальный интерфейс.

Правила управления генератором

Следует отметить, что пункты 1-6, относящиеся к каналу CH1 идентичны таковым к каналу CH2.

1) Задать форму выходного сигнала для канала СН1.

Рисунок 2.3

Когда символ "*" находится в верхней строке, нажмите комбинацию wave

кнопок нигт + рочн во второй строке отобразится выбор формы сигнала (WAVE), как показано на рисунке 2-3. Далее вращая ручку энкодера "ADJUST", выберите выходную форму сигнала: синусоидальную, прямоугольную, треугольную, возрастающую пилообразную, убывающую пилообразную или одну из 16 настраиваемых произвольных форм.

2) Задать частоту выходного сигнала для канала СН1

Рисунок 2.4

Когда символ "*" находится в верхней строке, как показано на рисунке 2.4,

передвигайте курсор с помощью кнопок **I** и **D**, чтобы выбрать шаговую величину установки частоты. Далее вращая ручку энкодера "ADJUST", задайте нужную частоту выходного сигнала.

3) Задать размах выходного сигнала для канала СН1

Когда символ "*" находится в верхней строке, **SHIFT** + PgDn на дисплее во второй строке появится выбор размаха сигнала, как показано на рисунке 2.5. Далее

CH1/2 SET

передвигайте курсор кнопками **1** или **1** или **1**, чтобы выбрать шаговую величину изменений размаха. Затем вращайте ручку энкодера "ADJUST", чтобы установить размах выходного сигнала, как показано на рисунке 2.5.

Рисунок 2.5

*F00020.0000kHz WAVE: 05.<u>0</u>0V

Аппарат показывает двойной размах (пик-пик). Когда значение размаха отображается, как 05.00В, значит, показания ведутся без аттенюатора. Максимальное значение двойного размаха в таком случае — 15В, минимальное — 0.15В, минимальная шаговая величина — 0.01В (10мВ).

Для включения аттенюатора на -20дБ, нажмите **СК**. Тогда двойной размах будет отображаться так, как показано на рисунке 2-6. Максимальный двойной размах выходного сигнала в таком случае будет равен 1.500В, минимальный — 0.015В, минимальная шаговая величина — 0.001В (1мВ).

Рисунок 2.6

4) Задать смещение сигнала для канала СН1

Рисунок 2.7

F00020.0000kHz *OFFS: 0<u>5</u>0%

5) Установка выходной мощности для СН1.

Нажмите кнопку (янгт + рода, а затем рода, чтобы перейти к настройкам выходной мощности. Вращайте ручку энкодера "ADJUST", чтобы отрегулировать амплитуду выходного сигнала, как показано ниже:

8) Задать единицу измерения частоты

9) Отслеживание

Функция отслеживания нужна для синхронизации частоты сигнала канала CH2 с сигналом канала CH1. Пользователи могут установить размах и коэффициент заполнения для отслеживания. Для включения функции нажимайте **WAVE AMPL**

кнопку Рурр или Рурп до тех пор, пока не появится функция отслеживания

(TRACE), как показано на рисунке 2.11. Далее нажмите "*" переключится на вторую строку. Следом нажмите кнопку ключения (ON) или выключения (OFF) функции. После включении функции отслеживания, происходит автоматическое отслеживание частоты сигнала канала CH2 по отношению к CH1. Если размах сигналов с обоих каналов одинаковый, то происходит автоматическое отслеживание размаха канала CH2 по отношению к каналу CH1. Если у обоих каналов одинаковый коэффициент заполнения, происходит автоматическое отслеживание коэффициента заполнения канала CH2 по отношению к CH1.

10) Выбор входа внешнего сигнала

Рисунок 2.12

F00000020.00Hz *MSR-SEL:Ext.IN

11) Функция внешних измерений

На выбранный вход внешнего сигнала можно подать сигнал и измерить множество параметров этого сигнала. Для этого после выбора внешнего входа (см. WAVE AMPL PgUp PgDn

выше) и подачи на него сигнала нажимайте кнопку или во до тех пор, пока не появится функция внешних измерений (MSR-MODE), как показано на

2. Затем нажмите кнопку **PgDn**, на дисплее появится функция SET SWEEP FREQ2. Установите частоту 10 Гц, как показано ниже на рисунке 2.16:

AMPL

14) Калибровка

При изготовке прибор был откалиброван на заводе. Если появится необходимость повторной калибровки, пожалуйста, обратитесь к поставщику или производителю.

4. Управление устройством при помощи ПК

1. Установка программного обеспечения

Шаг 1: Установите файл visa540_runtime.exe.

Шаг 2: Установите драйверы последовательного порта - USB CH341SER (SETUP.exe).

Шаг 3: Установите файл signal generator.exe.

2. Настройка подключения

Шаг 1: Определите номер порта в меню Панель управления -> Диспетчер устройств -> Порты СОМ и LPT.

Configuration	Control Panel	Extend Function	Arbitrary	Busy 📰 📗		EXIT
	DDS Sian	al Generato	or Cont	rol Pa	nel	
	ig of	- -	Conne	ect		
			Serial Numb	er:		
	: <i>М</i> р	J#/T				

Шаг 2: Выберите в настройках порт подключения генератора сигналов.

Шаг 3: Выполните подключение, нажав кнопку «Connect» (подключить).

1. Выходной сигнал стандартной формы

(1) Контроль выходного сигнала: в окне отображается текущая форма выходного сигнала в реальном времени.

(2) Измерение параметров внешнего сигнала. Кроме прочего, ПО позволяет точно контролировать ширину и периодичность импульсов.

(3) Подключение устройства, развертывание страницы, контроль выходного сигнала произвольной формы.

По умолчанию выбран сигнал произвольной формы — последовательность импульсов.

(4) Выбор ячейки (0-15) для сохранения данных.

Пример: выберите ячейку 1 и нажмите кнопку «Write» (*записать*). Ход выполнения процесса сохранения отображается с помощью полосы состояния синего цвета.

(5) После сохранения сигнала Arb1 в канале CH1 окно панели управления имеет следующий вид:

2. Создание сигнала произвольной формы

(1) Убедитесь в наличии устойчивого соединения между ПК и устройством.

(2) Откройте страницу графиков и наведите курсор мыши в область отображения формы сигнала. Нажмите левую кнопку мыши и нарисуйте нужную форму. Для завершения рисования отпустите кнопку.

(3) Сохраните сигнал в соответствующую ячейку, после чего на панели управления отобразится путь к его расположению.

3. Рисование трапецеидального сигнала

(1) Убедитесь в наличии устойчивого соединения между ПК и устройством.

(2) Для ввода трапецеидального сигнала следует выбрать пункт «line» (*рисование* линиями).

(3) Установите следующие параметры: начальная точка — 0, конечная точка — 800, начальная амплитуда — 0, конечная амплитуда — 8.

(4) Нажмите кнопку «Get Waveform» (генерация формы сигнала).

(5) Установите следующие параметры: начальная точка — 800, конечная точка — 1601, начальная амплитуда — 8, конечная амплитуда — 8. Затем нажмите кнопку «Get Waveform» (генерация формы сигнала).

(6) Установите следующие параметры: начальная точка — 1602,
конечная точка — 2047, начальная амплитуда — 8, конечная амплитуда — 0.
Затем нажмите кнопку «Get Waveform» *(генерация формы сигнала)*.

(7) Сохраните сигнал в соответствующую ячейку, после чего на панели управления отобразится путь к его расположению. Аналогичным образом можно рисовать другие формы сигналов.

4. Рисование амплитудно-модулированного сигнала

(1) Убедитесь в наличии устойчивого соединения между ПК и устройством.

(2) В поле «Standard Waveform» (форма сигнала) выберите «sine» (синусоидальный тип сигнала). Установите следующие параметры: начальная точка — 0, конечная точка — 80. Затем нажмите кнопку «Get Waveform» (генерация формы сигнала), после чего нажмите на зеленую стрелку, расположенную рядом с нужной формой сигнала.

(3) Установите следующие параметры: начальная точка — 0, конечная точка — 2048. Затем нажмите кнопку «Get Waveform» *(генерация формы сигнала)*, после чего нажмите на зеленую стрелку, расположенную рядом с нужной формой сигнала.

(4) Выберите в опциях параметр «multiply» (*повторение*). Затем нажмите кнопку «Get Waveform» (*генерация формы сигнала*) для генерации амплитудномодулированного сигнала.

(5) Сохраните сигнал в соответствующую ячейку, после чего на панели управления отобразятся форма и параметры полученного сигнала.

5. Условия хранения и эксплуатации

1. Используйте рекомендованный адаптер питания DC5V.

2. LCD дисплей чувствителен к физическому воздействию, поэтому не используйте генератор вблизи с опасными химическими веществами и предотвращайте удары. Если на него попала жидкость, пыль или грязь, аккуратно протрите сухой салфеткой.

3. Используйте в сухих помещениях. Рабочая температура от -10°С до +50°С, температура для хранения от -20°С до +70°С.

4. Не пытайтесь разбирать прибор и не выбрасывайте упаковку. Эти действия аннулируют гарантию. Ремонт возможно производить только в ремонтных отделах или сервисных центрах.

5. Не располагайте открытый огонь, жидкости, химические вещества, и другие небезопасные для прибора предметы вблизи или на генераторе, это может повредить прибор.

6. Дисплей легко загрязняется, поэтому не касайтесь его руками или какимилибо предметами. Не позволяйте детям играть с генератором.

7. Не вскрывайте корпус аппарата, чтобы избежать серьёзных повреждений внутренней платы.