Программируемый двуногий робот-конструктор на базе Arduino UNO R3

Инструкция по сборке, настройке и управлению

Содержание

1	Процесс сборки и первоначальной настройки робота	3
	1.1 Описание комплектующих	3
	1.2 Установка верхней панели робота	4
	1.3 Установка стоек под основную плату и монтаж батарейного отсека	5
	1.4 Установка сервомоторов	6
	1.5 Сборка ног робота и установка сервомоторов на нижние суставы	8
	1.6 Установка основной платы	10
	1.7 Установка среды Arduino и калибровка сервоприводов (нулевое положение)	14
	1.8 Установка суставов и сборка нижнего привода	17
	1.9 Установка УЗ датчика расстояния	20
	1.10 Установка модуля удаленного управления	22
	1.10.1 Настройка Wi-Fi подключения устройства	22
	1.10.2 Привязка устройства в приложении WeChat	24
	1.10.3 Управление устройством через интерфейс WeChat	26
	1.10.4 Индикация состояния устройства	27
	1.10.5 Определение управляющих команд и протоколов передачи данных	27
	1.11 Финальная сборка и укладка проводов	29
2	Подготовка к работе	29
3	Рекомендации по тестированию	31
4	Обозначения элементов платы UNO R3	32
5	Таблица кнопок пульта листанционного управления	32

1 Процесс сборки и первоначальной настройки робота

1.1 Описание комплектующих

Обратите внимание. Робот поставляется в одном из трёх комплектов:

- А-комплект базовая версия, управление с инфракрасного пульта;
- **В-комплект** включает А-комплект и модуль управления по Bluetooth (управление со смартфона);
- **С-комплект** включает А-комплект и модуль управления через WeChat (удалённое управление по Wi-Fi).

І. Основной комплект (А-набор) — управление с ИК-пульта

i ochobnov kominicki (A hacop)		y in publicative e vitt in yribita	
Nº	Наименование	Спецификация / модель	Кол-во
1	Основная плата Arduino UNO	Совместимая или оригинал	1
2	Плата расширения	Для роботов/мобильных платформ, 20А	1
3	Микросервомотор (SG90)	Модель ZYSG90	4
4	Ультразвуковой модуль		1
5	Батарейный отсек	Под 18650, без белого разъёма	1
6	Аккумуляторы	Тип 18650, синий	2
7	Провод Dupont 4P	Мама-мама, 15 см	1
8	Зарядное устройство	Для аккумуляторов 18650	1
9	ИК-пульт	Компактный	1
10	USB-кабель	С прямоугольным разъёмом	1
11	Отвёртка	Комбинированная	1
12	Маленький гаечный ключ		1
13	Стяжки (кабельные)	Пластиковые	3
14	Резиновые ножки	Чёрные	8
15	ИК-приёмник		1

II. Дополнительные аксессуары

Наименование	Кол-во
Медная стойка M3×25 с проходным отверстием (сквозная)	5
Медная стойка M3×10 с проходным отверстием (сквозная)	5
Винт M3×10	20
Винт M3×8	16
Гайка М3	15
Винт M3×12	4
Подшипник для микро-сервопривода (малый)	2
Самоблокирующаяся гайка МЗ (с нейлоновым фиксатором)	4
Саморез M2×5 с шайбой (с резьбой для пластика/самонарезающий)	5
Винт M1.7×4 с шайбой (обычно для крепления малых пластиковых деталей)	10
Саморез M2.3×8 с плоским концом (без острия, плоскохвостый)	10

III. В-набор — управление по Bluetooth

Включает весь А-набор + дополнительный модуль

Наименование	Спецификация	Кол-во
Bluetooth-модуль	_	1

IV. С-набор — управление через WeChat (удалённо)

Включает весь А-набор + дополнительный модуль

Наименование	Спецификация	Кол-во
Модуль удалённого управления	через WeChat	1

Провод Dupont 4P, мама-мама (одиночный)	4Р мама-мама (1 шт.)	1
Модуль USB-программатора	CH340	1

1.2 Установка верхней панели робота

1. Определите ориентацию панели

- Найдите на панели вытравленную стрелку она указывает вперёд.
- Ориентируйте деталь так, чтобы стрелка смотрела вниз от вас (вперёд по направлению будущего движения робота).

2. Установка винтов

- Найдите **4 монтажных отверстия** ближе к углам.
- Вставьте в них винты М3 сверху вниз (со стороны с указателем «вперёд»).
- Убедитесь, что винты входят ровно, без перекосов.

3. Установка стоек

- На нижней стороне панели (противоположной стороне от головок винтов) прикрутите **4 медные стойки** (M3×25).
- Используйте отвёртку для фиксации стойки должны быть закреплены плотно, но без избыточного усилия.

1.3 Установка стоек под основную плату и монтаж батарейного отсека

1. Установка дополнительных стоек под основную плату

- 1. Возьмите верхнюю панель с уже закреплёнными стойками (из предыдущего этапа).
- 2. С другой стороны прикрутите 4 латунных стойки длиной 10мм 4-мя винтами M3x8. В результате должно получится следующее:

Эти стойки образуют крепёжную платформу для установки Arduino UNO.

2. Установка батарейного отсека

- 1. Переверните панель и найдите центральные пазы **к ним будет крепиться батарейный отсек**.
- 2. Разместите батарейный отсек горизонтально, параллельно переднему краю основания.
- 3. Двумя винтами M3x8 и гайками M3 прикрутите батарейный отсек со стороны длинных стоек. При прикручивании вначале необходимо вкрутить винты в отсек, а затем прикрутить его гайками к пластине. Не перетягивайте винты— пластик при сильной затяжке может треснуть.

Обратите внимание: Батарейный отсек должен быть установлен таким образом, что бы его провода выходили со стороны, противоположной стрелке, указывающей направление вперед.

1.4 Установка сервомоторов

Возьмите нижнюю монтажную пластину — это прямоугольная деталь с закруглёнными углами и продолговатыми прорезями и достаньте 2 сервомотора.

Установите сервоприводы в боковые прямоугольные вырезы панели:

- так, чтобы выходной вал (ось) смотрел внутрь (в сторону центрального окна),
- кабель вверх или вниз, как предусмотрено дальнейшей разводкой. Провода должны выходить на ту же сторону, что и провода от батарейного отсека (противоположно стрелке направления на верхней панели).

Используйте саморезы M2×5 для крепления каждого сервопривода: по 2 винта на привод, не затягивайте слишком сильно — можно повредить корпус привода; и не слабо — иначе крепление будет разбалтываться при движении.

Рекомендация: заворачивайте шурупы вручную, без электроинструмента.

Винтами прикрутите нижнюю пластину к верхней. Нижняя крепится со стороны батарейного отсека.

После установки сервомоторов и совмещения нижней и верхней пластины убедитесь, что оба привода расположены симметрично относительно центральной оси, а батарейный отсек не мешает ходу проводов и соединению с платой.

1.5 Сборка ног робота и установка сервомоторов на нижние суставы Для сборки потребуются детали, изображенные на фотографии:

Возьмите U-образные крепления и осторожно вставьте их в пазы ступней.

 \triangle Не прикладывайте силу — пластик хрупкий. Если не входит: аккуратно покачивайте. Допускается подпиливание ножек, если иным способом не получается вставить крепления в пазы.

Закрепите крепления с помощью винтов M3×10 и гаек M3.

Установите сервомоторы внутрь U-образных креплений, осью наружу. Прикрутите мотор двумя шурупами.

Проверьте, чтобы ось сервомотора проходила по центру ступни, кабель выходил наружу и не мешал.

Подготовка рычагов

- **№** Горизонтальная (опора ноги):
- 1. Возьмите двухсторонний длинный рычаг из комплекта SG90.
- 2. Обрежьте её по второму отверстию от края.
- 3. Прикрутите к ней 2 шурупа М1.7×4, в третье отверстия от центра.
- ★ Работать нужно, положив деталь на стол шурупы входят туго.

- **№** Вертикальная (сустав):
- 1. Используйте односторонние рычаги.
- 2. Вкрутите в них шурупы M1.7×4 во второе и третье отверстия от центра.

Соедините горизонтальный и вертикальный элементы — получится шарнирное соединение ноги. Используйте винты M3×10 и гайки M3.

1.6 Установка основной платы

Установите плату Arduino на верхние стойки (M3×25), ранее прикрученные к верхнему основанию. Закрепите тремя винтами M3×8:

 \triangle Четвёртый винт не используйте, если он попадает в зону USB-разъёма — он может повредить разъём при затяжке (см. фото).

Убедитесь, что: разъёмы USB и питания расположены правильно (вперёд/вбок), отверстия совмещены, контакты платы не деформированы.

Аккуратно совместите разъёмы платы расширения с пинами Arduino Uno. Плотно нажмите шилд сверху— он должен сесть на разъёмы без перекоса. Проверьте, чтобы все штыри вошли до конца.

Возьмите провода от батарейного отсека (черный — минус, красный — плюс). Подключите их к винтовому клеммнику на шилде расширения:

- проверьте полярность (обычно "+"/"-" подписаны на плате).
- зажмите провода аккуратно, но надёжно.

Питание от 2×18650 подаётся на плату расширения напрямую через клеммник — это обеспечивает питание всей системы, включая сервомоторы.

Вставьте батареи в батарейный отсек. Включите кнопку питания на плате расширения, тем самым проверив поступление питания. Индикатор должен загореться.

Подключим сервоприводы к плате расширения. Сервомотор подключается по 3-жильному кабелю:

- оранжевый / белый сигнал (Signal, подключается к цифровому пину),
- красный питание +5V,
- коричневый / чёрный GND (общий провод).

Подключите 4 сервопривода к следующим пинам:

Сервопривод (позиция)	Подключить к пину	Примечание
RU — Правое плечо (верх)	D3	Верхняя правая конечность
RL — Правая нога (низ)	D5	Нижняя правая конечность
LU — Левое плечо (верх)	D6	Верхняя левая конечность
LL — Левая нога (низ)	D9	Нижняя левая конечность

1.7 Установка среды Arduino и калибровка сервоприводов (нулевое положение)

Все необходимые файлы находятся в архиве А:

- Папка 2.开发环境 \ подпапка Arduino 开发软件 Arduino IDE
- Папка 2.开发环境 \ подпапка Arduino 板载 USB 转串口 CH340 驱动**安装包** драйвер CH340
- Папка 3.arduino 例程代码 \ подпапка1.两足机器人舵机零点调节程序 код simple_robot.ino

Шаг 1: Установка Arduino IDE

- 1. Откройте папку Arduino 开发软件.
- 2. Запустите файл arduino-1.7.8.org-windows.exe двойным кликом.

- 3. Следуйте шагам установщика
- 4. После завершения Arduino IDE будет установлена на компьютер.

Шаг 2: Подключение платы и установка драйвера СН340

- 1. Подключите контроллер (Arduino Uno) к компьютеру через USB-кабель.
- 2. Откройте Диспетчер устройств Windows:
- \circ Win + R → введите devmgmt.msc → Enter.
- o Найдите раздел Порты (COM и LPT).
- ∘ Убедитесь, что среди них есть "USB-SERIAL CH340" например, COM8 (см. скриншот).

Если устройство не определено корректно:

- 。 Перейдите в папку Arduino 板载 USB 转串口 CH340 驱动安装包.
- о Запустите CH341SER.EXE произойдёт установка драйвера.

Нажмите кнопку 安装 (Установить) — это начнёт установку драйвера. Подождите несколько секунд, пока появится сообщение об успешной установке. После этого окно можно закрыть.

Шаг 3: Загрузка программы калибровки (нулевой установки)

- 1. Перейдите в:
 - 。 Папка 3.arduino 例程代码 \ подпапка 1.两足机器人舵机零点调节程序

 Дважды кликните по файлу simple_robot.ino — проект откроется в среде Arduino IDE.

2. B Arduino IDE:

- Убедитесь, что выбрана плата **Arduino Uno** (Инструменты > Плата > Arduino Uno)
- о Установите **правильный СОМ-порт** (Инструменты > Порт > СОМх, где х соответствует найденному ранее например, СОМ8).

Нажмите сочетание клавиш Ctrl + U или кнопку Загрузить (правая стрелка). Подождите окончания компиляции и загрузки. После успешной прошивки сервоприводы автоматически повернутся в среднее (нулевое) положение и зафиксируются.

COM5üç¥0H00!ì0

COM8

编程器

int Echo = A1; // Echo回声脚(P2.0) int Trig =A0; // Trig 触发脚(P2.1)

烧录引导程序

int beep=A3://%

int Distance = 0;

★ Это положение необходимо зафиксировать механически в следующих шагах — оно является исходной точкой при сборке.

1.8 Установка суставов и сборка нижнего привода

После установки платформ, контроллера и первичной калибровки сервоприводов, можно переходить к сборке нижних конечностей (ног робота) и установке суставных соединений.

Установка суставов на сервоприводы нижней платформы

- Установите собранные суставы на сервоприводы, расположенные на нижней платформе.
- о Ось сустава должна располагаться параллельно краю платформы.
- Отверстие крепления к нижнему приводу должно быть направлено вперёд в сторону стрелки на верхней платформе (см. фото ниже).

Если добиться идеальной параллельности не удаётся, допускается небольшое отклонение наружу. В дальнейшем это можно компенсировать программной калибровкой.

Сустав крепится к валу сервопривода шурупом из комплекта сервопривода. Затягивать нужно умеренно, чтобы не повредить карбоновые компоненты.

- 1. Поверните сустав на 90° наружу, чтобы точка крепления нижнего привода оказалась снаружи.
- 2. Ослабьте винт крепления (примерно на 2 оборота), чтобы можно было немного раздвинуть детали сустава.

3. Подготовьте вторую опору ноги:

- о Возьмите деталь с подшипником (см. фото).
- о Вставьте винт в отверстие основной части сустава (со стороны сервопривода).

о Вставьте подшипник в отверстие второй опоры, бортиком наружу.

о Наденьте опору с подшипником на винт.

о Закрутите самоконтрящуюся гайку, используя гаечный ключ (обязательно, иначе гайка не зафиксируется).

4. Вставьте второй сервопривод (нижний сустав ноги) внутрь раздвинутого узла.

- 5. Прикрутите его вал шурупом из набора сервопривода.
- 6. Закрепите вторую опору на стопе.
- 7. Затяните ранее ослабленный винт сустава.

1.9 Установка УЗ датчика расстояния

1. Вставьте модуль в акриловую панель через отверстия под ультразвуковые излучатели.

- 2. Совместите отверстия на плате с монтажными отверстиями панели.
- 3. Наживите все четыре шурупа, предварительно вставив их в отверстия. После выравнивания модуля затяните винты, зафиксировав датчик в панели

Крепление панели к корпусу робота

Возьмите собранную панель с установленным датчиком. Совместите центральное отверстие панели с соответствующим отверстием в верхней части конструкции робота.

Вставьте винт через центральное отверстие снаружи внутрь. Зафиксируйте винт гайкой с внутренней стороны конструкции.

Подключение кабеля

Подключите четырёхпроводный кабель к пинам модуля.

Важно: убедитесь, что чёрный провод подключён к выводу GND.

Второй конец кабеля подключается к шилду (контроллеру), соблюдая ту же последовательность.

 \triangle Ошибки при подключении (особенно VCC \leftrightarrow GND) могут повредить модуль.

	<u> </u>		, , , , , , , , , , , , , , , , , , , ,
Пин на модуле	Назначение	Цвет провода (по видео)	Назначение на контроллере
VCC	Питание +5 В	Красный	5V
Trig	Триггер-сигнал	Белый	D8 (или другой цифровой)
Echo	Приём сигнала	Жёлтый	D9 (или другой цифровой)
GND	Земля	Чёрный	GND

1.10 Установка модуля удаленного управления

Подключение ESP-модуля к контроллеру

Пин ESP-модуля	Назначение	Подключается к шилду (Arduino Uno)
VCC	Питание 3.3В	3.3V или внешний регулятор (если есть)
GND	Земля	GND
TX	Передача	RX (на Arduino)
RX	Приём	TX (на Arduino)

1.10.1 Настройка Wi-Fi подключения устройства

После получения устройства необходимо выполнить настройку параметров Wi-Fi-соединения через последовательный порт. Для этого используется специализированная утилита на ПК.

Этапы настройки:

Шаг 1. Настройка параметров СОМ-порта

- Откройте утилиту настройки (например, "串口调试助手" или "智宇科技助手" в папке комплекта С, подпапка «8.微信模块介绍资料》).
 - Установите **скорость передачи данных (baud rate)**: 9600.
- Выберите **СОМ-порт**, соответствующий подключённому устройству (зависит от системы).

Если модуль не виден как СОМ-порт, установите драйвер.

- Откройте папку USB 转串口 CH340 驱动安装包.
- Запустите файл установки соответствующий вашей системе (х64 или х86).
- Дождитесь завершения установки.

Шаг 2. Настройка ключа и параметров сервера

Введите следующие параметры подключения:

Параметр	Значение
KEY	2000

IP	119.23.109.47
Порт	8991

▲ Внимание: IP-адрес и порт являются фиксированными и не подлежат изменению.

Шаг 3. Настройка параметров Wi-Fi

Введите данные для подключения к вашей Wi-Fi сети:

Поле	Требования
SSID	Только латиница и цифры , ≤16 символов
Пароль Wi-Fi	Только латиница и цифры , ≤32 символов

После ввода нажмите кнопку «设置» (Установить/Применить), чтобы отправить настройки в устройство.

После завершения всех трёх шагов модуль перезагрузится и попытается подключиться к Wi-Fi сети и серверу управления.

При успешном подключении светодиодный индикатор на модуле загорится постоянно.

1.10.2 Привязка устройства в приложении WeChat

После успешной настройки модуля и подключения к Wi-Fi необходимо привязать устройство к своему WeChat-аккаунту через официальный публичный аккаунт производителя.

- 1. Подпишитесь на официальный WeChat-паблик
- Откройте приложение **WeChat**.
- В строке поиска найдите и подпишитесь на **официальный аккаунт производителя**.
 - Перейдите в раздел "设备管理" (Управление устройствами).

2. Выберите опцию "添加设备" (Добавить устройство)

3. Введите следующие данные:

Поле	Источник	
ID устройства	Указан производителем (например: 20180273)	
Пароль Последние 6 цифр ID (например: 180273)		

 \triangle Пароль по умолчанию — **последние 6 символов ID устройства**, если не указано иное.

4. Подтвердите добавление

- После ввода ID и пароля нажмите кнопку подтверждения.
- В случае успешной привязки устройство появится в списке.

1.10.3 Управление устройством через интерфейс WeChat

После того как устройство было привязано к вашему аккаунту WeChat, вы можете приступить к управлению им через интерфейс публичного аккаунта.

1. Откройте интерфейс управления

- В главном окне WeChat нажмите на **устройство в списке** (область, выделенную красным).
 - Если устройство не отображается, убедитесь, что:
 - оно добавлено и привязано,
 - о оно **подключено к Wi-Fi** и находится в сети.

 \triangle Если список устройств пуст — необходимо сначала выполнить привязку.

2. Переход в интерфейс управления

- После нажатия откроется панель управления устройством.
- Здесь отображаются:
 - о Текущий статус соединения,
 - о Функциональные кнопки (движение, поворот, измерение и др.),
 - о Информация от устройства (например, данные с датчиков).

1.10.4 Индикация состояния устройства

Светодиодный индикатор на модуле позволяет определить текущее состояние подключения и работу устройства. Ниже приведено расшифрованное поведение индикатора.

Таблица состояния светодиода:

Nº	Состояние светодиода	Значение
1	Мигает один раз при включении	Устройство успешно запущено (питание подано)
2	3 вспышки каждые 5 секунд	Отсутствуют настройки Wi-Fi
3	2 вспышки каждые 5 секунд	Wi-Fi настроен, но нет соединения с сервером
4	Постоянное свечение	Устройство подключено к серверу

№ Рекомендации при настройке:

- Если индикатор не мигает вообще проверьте питание.
- Если мигает **3 раза** выполните настройку SSID и пароля Wi-Fi.
- Если мигает **2 раза** проверьте наличие интернета или правильность IP и порта.
- При постоянном свечении модуль готов к работе и управлению через WeChat.

1.10.5 Определение управляющих команд и протоколов передачи данных

Взаимодействие между WeChat-приложением, управляющим модулем и роботом осуществляется по набору текстовых команд и сообщений. Ниже представлены используемые команды и формат обмена данными.

Команды, передаваемые с клиента WeChat

При нажатии и отпускании кнопок в интерфейсе WeChat-управления, модулю отправляются следующие строки:

Действие	При нажатии	При отпускании
Вперёд	ONA	ONF
Назад	ONB	ONF
Поворот влево	ONC	ONF
Поворот вправо	OND	ONF
Остановиться	ONE	ONF (добавлено позже)
🗘 Пользовательская 1 (вращение)	ON1	ONa
■» Пользовательская 2 (сигнал)	ON2	ONb
Пользовательская 3 (движение по линии)	ON3	ONc
ँ Пользовательская 4 (обход препятствий)	ON4	ONd
Пользовательская 5 (тушение огня)	ON5	ONe
🗘 Пользовательская 6 (сброс)	ON6	ONf
👣 Пользовательская 7 (следование)	ON7	ONg
🖍 Пользовательская 8 (измерение расстояния)	ON8	ONh

Управление сервоприводами (угловое позиционирование)

Для управления сервоприводами используется формат команд:

SA[угол]F — для сервопривода 1 SB[угол]F — для сервопривода 2 SC[угол]F — для сервопривода 3

SD[угол]F — для сервопривода 4

Пример	Значение	
SA100F	Установить сервопривод 1 на 100°	

Диапазон допустимых значений: 0–180 градусов.

Ответы от устройства к WeChat-модулю (формат сообщений)

Формат передаваемых данных имеет следующую структуру:

%SET*<КОМАНДА>*<ЗНАЧЕНИЕ>#

Команда	Назначение	Пример	Расшифровка
J	Отображение расстояния	%SET*J*1234#	Расстояние = 1234 см
S	Отображение скорости	%SET*S*5534#	Скорость = 5534 см/с
D	Отображение текущего режима	%SET*D*02#	Текущий режим = 2

№ Ограничения

- Все значения передаются в виде **ASCII-строк**.
- Значения должны быть только цифровыми, без символов или пробелов.

1.11 Финальная сборка и укладка проводов

На каждую из четырёх опорных точек на нижней панели наклейте по одной резиновой ножке.

Аккуратно уложите все провода (от сервоприводов, датчика и питания).

⚠ **Важно**: провода не должны мешать вращению сервоприводов, особенно в области "пояса", "шеи" и "тазобедренных" соединений.

С помощью **пластиковых стяжек** (хомутов) зафиксируйте провода в безопасных местах. Обрежьте лишние концы стяжек.

2 Подготовка к работе

Внимание:

Перед началом работы обязательно соблюдайте приведённые выше шаги в указанной последовательности. Несоблюдение может привести к ошибкам, за которые производитель/продавец не несёт технической ответственности.

Шаг 1. Копирование материалов

Сразу после открытия содержимого архива, полностью скопируйте все файлы и папки на компьютер.

Это обеспечит корректную установку драйверов и стабильную работу программного обеспечения.

Шаг 2. Подготовка среды разработки

Перед первым включением платы:

- Перейдите к папке «2.开发环境» (2. Среда разработки») в архиве А.
- Внимательно изучите материалы об установке драйверов и программной среды Arduino.

Шаг 3. Подключение и установка ПО

Согласно видеоруководству и инструкциям выше:

• Выполните подключение основной платы и всех проводов.

• Установите необходимые драйверы и вспомогательное ПО, поставляемое в комплекте.

^ RMN	Дата изменения	Тип	Размер
1.学前先看	09.06.2025 11:17	Папка с файлами	
2.开发环境	02.04.2018 11:10	Папка с файлами	
📙 3.arduino 例程代码	02.04.2018 11:25	Папка с файлами	
<mark>,</mark> 4.视频教程	02.04.2018 11:30	Папка с файлами	
5.原理图	02.04.2018 11:12	Папка с файлами	
6.Arduino面包板连线绘图软件	02.04.2018 11:12	Папка с файлами	
── 7.Mixly编程案例	02.04.2018 11:26	Папка с файлами	
Autorun	04.04.2016 18:50	Сведения для уст	1 KB
== chiyu	04.04.2016 19:02	Значок	17 KB

Шаг 4. Обучение и практические занятия

Перейдите к практическому освоению:

- Следуйте видеоруководствам из раздела 4.视频教程 (4. Видеоуроки) в архиве В и С:
 - о уроки по работе с Arduino-комплектом,
 - о уроки по управлению Arduino-роботом.

В архиве А в папке 3.arduino **例** 程代码 помимо базового скетча для установки сервоприводов в **нулевое положение**, содержатся также другие полезные примеры:

Nº	Название папки	Назначение
1	两足机器人舵机零点调节程序	Установка всех сервоприводов в нулевое положение
		(базовая калибровка)
2	两足机器人前进、后退、左	Скрипты движения: вперёд, назад, поворот
	转、右转程序	влево/вправо
3	两足机器人基本舞蹈案例	Демонстрация базовых танцевальных движений
		робота
4	两足机器人超声波避障程序案	Управление на основе ультразвукового датчика (обход
	例	препятствий)
5	两足机器人红外遥控控制案例	Управление роботом с помощью ИК-пульта
	程序	

★ Все скетчи можно открыть в Arduino IDE, отредактировать и загрузить в плату Arduino Uno R3 через USB.

3 Рекомендации по тестированию

Подготовка питания

- 1. Зарядите аккумуляторы 18650:
 - Установите их в зарядное устройство.
 - Красный индикатор идёт зарядка.
 - Жёлтый (или зелёный) индикатор аккумулятор полностью заряжен.

Примечание: Аккумуляторы часто поставляются уже частично заряженными — это нормально.

2. Установите аккумуляторы в отсек и включите питание нижней платы (нажатием на выключатель).

Особенности хода робота

- После включения двуногий робот может не двигаться по прямой.
- Заводские параметры PWM (широтно-импульсной модуляции) заданы одинаковыми, но:
 - о Из-за технологических допусков электродвигателей возможны различия в скорости вращения.
 - В процессе обучения вы научитесь корректировать PWM-параметры, чтобы компенсировать это.

Рекомендуется сначала посмотреть обучающее видео, прежде чем проводить тестовые запуски.

√ После завершения тестирования

- Выключайте питание, когда робот не используется это предотвращает саморазряд батареи.
- Рекомендуется извлекать аккумуляторы, особенно при длительном хранении. Перед хранением батареи должны быть полностью заряжены.
 - После 10–20 минут работы аккумуляторы нуждаются в подзарядке.
- Для извлечения аккумуляторов можно аккуратно использовать плоскую отвёртку (однако действуйте осторожно).

Важное замечание по питанию

При выполнении лабораторных работ желательно использовать питание от батарей, а не от USB.

Причины:

- USB-питание даёт недостаточный ток;
- В отдельных случаях возможен «смертельный» сбой порта при холодном запуске.

4 Обозначения элементов платы UNO R3

5 Таблица кнопок пульта дистанционного управления

