Программируемый двуногий робот-конструктор на базе Arduino UNO R3

Инструкция по сборке, настройке и управлению

Содержание

1 Процесс сборки и первоначальной настройки робота	3
1.1 Описание комплектующих	3
1.2 Установка верхней панели робота	4
1.3 Установка стоек под основную плату и монтаж батарейного отсека	5
1.4 Установка сервомоторов	6
1.5 Сборка ног робота и установка сервомоторов на нижние суставы	8
1.6 Установка основной платы	10
1.7 Установка среды Arduino и калибровка сервоприводов (нулевое положение)	14
1.8 Установка суставов и сборка нижнего привода	17
1.9 Установка УЗ датчика расстояния	20
1.10 Установка модуля удаленного управления	22
1.10.1 Настройка Wi-Fi подключения устройства	22
1.10.2 Привязка устройства в приложении WeChat	24
1.10.3 Управление устройством через интерфейс WeChat	26
1.10.4 Индикация состояния устройства	27
1.10.5 Определение управляющих команд и протоколов передачи данных	27
1.11 Финальная сборка и укладка проводов	29
2 Подготовка к работе	29
3 Рекомендации по тестированию	31
4 Обозначения элементов платы UNO R3	32
5 Таблица кнопок пульта дистанционного управления	32

1 Процесс сборки и первоначальной настройки робота

1.1 Описание комплектующих

Обратите внимание. Робот поставляется в одном из трёх комплектов:

• А-комплект — базовая версия, управление с инфракрасного пульта;

• **В-комплект** — включает А-комплект и модуль управления по Bluetooth (управление со смартфона);

• **С-комплект** — включает А-комплект и модуль управления через WeChat (удалённое управление по Wi-Fi).

NՉ	Наименование	Спецификация / модель	Кол-во
1	Основная плата Arduino UNO	Совместимая или оригинал	1
2	Плата расширения	Для роботов/мобильных платформ, 20А	1
3	Микросервомотор (SG90)	Модель ZYSG90	4
4	Ультразвуковой модуль		1
5	Батарейный отсек	Под 18650, без белого разъёма	1
6	Аккумуляторы	Тип 18650, синий	2
7	Провод Dupont 4P	Мама-мама, 15 см	1
8	Зарядное устройство	Для аккумуляторов 18650	1
9	ИК-пульт	Компактный	1
10	USB-кабель	С прямоугольным разъёмом	1
11	Отвёртка	Комбинированная	1
12	Маленький гаечный ключ		1
13	Стяжки (кабельные)	Пластиковые	3
14	Резиновые ножки	Чёрные	8
15	ИК-приёмник		1

I. Основной комплект (А-набор) — управление с ИК-пульта

II. Дополнительные аксессуары

Наименование	Кол-во
Медная стойка M3×25 с проходным отверстием (сквозная)	5
Медная стойка M3×10 с проходным отверстием (сквозная)	5
Винт M3×10	20
Винт М3×8	16
Гайка МЗ	15
Винт M3×12	4
Подшипник для микро-сервопривода (малый)	2
Самоблокирующаяся гайка МЗ (с нейлоновым фиксатором)	4
Саморез M2×5 с шайбой (с резьбой для пластика/самонарезающий)	5
Винт M1.7×4 с шайбой (обычно для крепления малых пластиковых деталей)	10
Саморез M2.3×8 с плоским концом (без острия, плоскохвостый)	10

III. В-набор — управление по Bluetooth

Включает весь А-набор + дополнительный модуль

Наименование	Спецификация	Кол-во
Bluetooth-модуль	_	1

IV. С-набор — управление через WeChat (удалённо)

Включает весь А-набор + дополнительный модуль

Наименование	Спецификация	Кол-во
Модуль удалённого управления	через WeChat	1

Провод Dupont 4Р, мама–мама (одиночный)	4Р мама-мама (1 шт.)	1
Модуль USB-программатора	CH340	1

1.2 Установка верхней панели робота

1. Определите ориентацию панели

• Найдите на панели вытравленную стрелку — она указывает вперёд.

• Ориентируйте деталь так, чтобы стрелка смотрела вниз от вас (вперёд по направлению будущего движения робота).

2. Установка винтов

- Найдите **4 монтажных отверстия** ближе к углам.
- Вставьте в них винты M3 сверху вниз (со стороны с указателем «вперёд»).
- Убедитесь, что винты входят ровно, без перекосов.

3. Установка стоек

• На нижней стороне панели (противоположной стороне от головок винтов) прикрутите **4 медные стойки** (M3×25).

• Используйте отвёртку для фиксации — стойки должны быть закреплены плотно, но без избыточного усилия.

1.3 Установка стоек под основную плату и монтаж батарейного отсека

1. Установка дополнительных стоек под основную плату

1. Возьмите верхнюю панель с уже закреплёнными стойками (из предыдущего этапа).

2. С другой стороны прикрутите 4 латунных стойки длиной 10мм 4-мя винтами М3х8. В результате должно получится следующее:

Эти стойки образуют крепёжную платформу для установки Arduino UNO.

2. Установка батарейного отсека

1. Переверните панель и найдите центральные пазы — к ним будет крепиться батарейный отсек.

2. Разместите батарейный отсек горизонтально, параллельно переднему краю основания.

3. Двумя винтами M3x8 и гайками M3 прикрутите батарейный отсек со стороны длинных стоек. При прикручивании вначале необходимо вкрутить винты в отсек, а затем прикрутить его гайками к пластине. Не перетягивайте винты— пластик при сильной затяжке может треснуть.

Обратите внимание: Батарейный отсек должен быть установлен таким образом, что бы его провода выходили со стороны, противоположной стрелке, указывающей направление вперед.

1.4 Установка сервомоторов

Возьмите нижнюю монтажную пластину — это прямоугольная деталь с закруглёнными углами и продолговатыми прорезями и достаньте 2 сервомотора.

Установите сервоприводы в боковые прямоугольные вырезы панели:

• так, чтобы выходной вал (ось) смотрел внутрь (в сторону центрального окна),

• кабель — вверх или вниз, как предусмотрено дальнейшей разводкой. Провода должны выходить на ту же сторону, что и провода от батарейного отсека (противоположно стрелке направления на верхней панели).

Используйте саморезы M2×5 для крепления каждого сервопривода: по 2 винта на привод, не затягивайте слишком сильно — можно повредить корпус привода; и не слабо — иначе крепление будет разбалтываться при движении.

Рекомендация: заворачивайте шурупы вручную, без электроинструмента.

Винтами прикрутите нижнюю пластину к верхней. Нижняя крепится со стороны батарейного отсека.

После установки сервомоторов и совмещения нижней и верхней пластины убедитесь, что оба привода расположены симметрично относительно центральной оси, а батарейный отсек не мешает ходу проводов и соединению с платой.

1.5 Сборка ног робота и установка сервомоторов на нижние суставы Для сборки потребуются детали, изображенные на фотографии:

Возьмите U-образные крепления и осторожно вставьте их в пазы ступней.

▲ Не прикладывайте силу — пластик хрупкий. Если не входит: аккуратно покачивайте. Допускается подпиливание ножек, если иным способом не получается вставить крепления в пазы.

Закрепите крепления с помощью винтов M3×10 и гаек M3.

Установите сервомоторы внутрь U-образных креплений, осью наружу. Прикрутите мотор двумя шурупами.

Проверьте, чтобы ось сервомотора проходила по центру ступни, кабель выходил наружу и не мешал.

Подготовка рычагов

🕸 Горизонтальная (опора ноги):

- 1. Возьмите двухсторонний длинный рычаг из комплекта SG90.
- 2. Обрежьте её по второму отверстию от края.
- 3. Прикрутите к ней 2 шурупа М1.7×4, в третье отверстия от центра.
- 🖈 Работать нужно, положив деталь на стол шурупы входят туго.

🛭 Вертикальная (сустав):

- 1. Используйте односторонние рычаги.
- 2. Вкрутите в них шурупы M1.7×4 во второе и третье отверстия от центра.

Соедините горизонтальный и вертикальный элементы — получится шарнирное соединение ноги. Используйте винты M3×10 и гайки M3.

1.6 Установка основной платы

Установите плату Arduino на верхние стойки (M3×25), ранее прикрученные к верхнему основанию. Закрепите тремя винтами M3×8:

▲ Четвёртый винт не используйте, если он попадает в зону USB-разъёма — он может повредить разъём при затяжке (см. фото).

Убедитесь, что: разъёмы USB и питания расположены правильно (вперёд/вбок), отверстия совмещены, контакты платы не деформированы.

Аккуратно совместите разъёмы платы расширения с пинами Arduino Uno. Плотно нажмите шилд сверху — он должен сесть на разъёмы без перекоса. Проверьте, чтобы все штыри вошли до конца.

Возьмите провода от батарейного отсека (черный – минус, красный – плюс). Подключите их к винтовому клеммнику на шилде расширения:

- проверьте полярность (обычно "+"/"-" подписаны на плате).

- зажмите провода аккуратно, но надёжно.

Питание от 2×18650 подаётся на плату расширения напрямую через клеммник — это обеспечивает питание всей системы, включая сервомоторы.

Вставьте батареи в батарейный отсек. Включите кнопку питания на плате расширения, тем самым проверив поступление питания. Индикатор должен загореться.

Подключим сервоприводы к плате расширения. Сервомотор подключается по 3-жильному кабелю:

- оранжевый / белый сигнал (Signal, подключается к цифровому пину),
- красный питание +5V,
- коричневый / чёрный GND (общий провод).

Подключите 4 сервопривода к следующим пинам:

Сервопривод (позиция)	Подключить к пину	Примечание
RU — Правое плечо (верх)	D3	Верхняя правая конечность
RL — Правая нога (низ)	D5	Нижняя правая конечность
LU — Левое плечо (верх)	D6	Верхняя левая конечность
LL — Левая нога (низ)	D9	Нижняя левая конечность

1.7 Установка среды Arduino и калибровка сервоприводов (нулевое положение) Все необходимые файлы находятся в архиве А:

• Папка 2.开发环境 \ подпапка Arduino 开发软件 — Arduino IDE

• Папка 2.开发环境 \ подпапка Arduino 板载 USB 转串口 CH340 驱动安装包 — драйвер CH340

• Папка 3.arduino 例程代码 \ подпапка1.两足机器人舵机零点调节程序 — код simple_robot.ino

Шаг 1: Установка Arduino IDE

1. Откройте папку Arduino 开发软件.

2. Запустите файл arduino-1.7.8.org-windows.exe двойным кликом.

og arduino-1.7.8.org-windows.exe

- 3. Следуйте шагам установщика
- 4. После завершения Arduino IDE будет установлена на компьютер.

Шаг 2: Подключение платы и установка драйвера СН340

- 1. Подключите контроллер (Arduino Uno) к компьютеру через USB-кабель.
- 2. Откройте Диспетчер устройств Windows:
- \circ Win + R → введите devmgmt.msc → Enter.
- о Найдите раздел Порты (СОМ и LPT).

Убедитесь, что среди них есть "USB-SERIAL CH340" — например, COM8 (см. скриншот).

Если устройство не определено корректно:

- 。 Перейдите в папку Arduino 板载 USB 转串口 CH340 驱动安装包.
- о Запустите CH341SER.EXE произойдёт установка драйвера.

选择INF文件:	CH341SER.INF	~
安装	WCH.CN	
卸载	11/04/2011, 3.3.2011.11	
帮助		

Нажмите кнопку 安装 (Установить) — это начнёт установку драйвера. Подождите несколько секунд, пока появится сообщение об успешной установке. После этого окно можно закрыть.

Шаг 3: Загрузка программы калибровки (нулевой установки)

- 1. Перейдите в:
 - 。 Папка 3.arduino 例程代码 \ подпапка 1.两足机器人舵机零点调节程序

- Дважды кликните по файлу simple_robot.ino проект откроется в среде Arduino IDE.
- 2. B Arduino IDE:
 - Убедитесь, что выбрана плата **Arduino Uno** (Инструменты > Плата > Arduino Uno)
 - Установите правильный СОМ-порт (Инструменты > Порт > СОМх, где х соответствует найденному ранее — например, СОМ8).

simple_robot #include "VarSpe VarSpeedServo RI	自动格式化 Ctrl+T 项目存档 编码修正与重载 串口监视器 Ctrl+Shift+N ArduBlock	prvo.h
VarSpeedServo RI VarSpeedServo LI VarSpeedServo LI	板 端口	Arduino AVR 板 Arduino Yún
int beep=A3://元	编程器 烧录引导程序	Arduino Yún Mini Linino One Arduino Uno
<pre>int Echo = A1: // int Trig =A0: // int Distance = 0: const int vel = 20 const int delay_Fo</pre>	Echo回古即(P2.0) Trig 他发脚(P2.1) , vel_Back = 10; rward = 750, delay_Back = 1000	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo ETH
const int array_ca const int delay_ti int RU_Degree = 0,	l[4] = {90,90,90,90,90}; // Def: m = 300; //Delay 750ms LU_Degree = array_cal[2] + 5;	Arduino Leonardo 100) (100, 30 Arduino Micro J. LL) Arduino Esplora

文件编辑项目 工具帮助

	NUMBER OF THE OWNER	
simple_robot	自动格式化 Ctrl+T 项目存档 编码修正与重载	arvo.h
‡include ^{‴VarSp} €	串口监视器 Ctrl+Shift+N	A wary
/arSpeedServo Rl	ArduBlock	
'arSpeedServo RI 'arSpeedServo LU	板	>
arSpeedServo LI	端口	Serial ports
.nt beep=A3://完	编程器	COM4üç¥0H□0!ì□ COM5üç¥0H□0!ì□
nt Roho = A1 · /	/ Reho回声谢(P2_0)	COM8
int Trig =A0; //	Trig 触发脚(P2.1)	
int Distance = 0;		

Нажмите сочетание клавиш Ctrl + U или кнопку Загрузить (правая стрелка). Подождите окончания компиляции и загрузки. После успешной прошивки сервоприводы автоматически повернутся в среднее (нулевое) положение и зафиксируются.

★ Это положение необходимо зафиксировать механически в следующих шагах — оно является исходной точкой при сборке.

1.8 Установка суставов и сборка нижнего привода

После установки платформ, контроллера и первичной калибровки сервоприводов, можно переходить к сборке нижних конечностей (ног робота) и установке суставных соединений.

Установка суставов на сервоприводы нижней платформы

- Установите собранные суставы на сервоприводы, расположенные на нижней платформе.
- Ось сустава должна располагаться параллельно краю платформы.
- Отверстие крепления к нижнему приводу должно быть направлено вперёд в сторону стрелки на верхней платформе (см. фото ниже).

Если добиться идеальной параллельности не удаётся, допускается небольшое отклонение наружу. В дальнейшем это можно компенсировать программной калибровкой. Сустав крепится к валу сервопривода шурупом из комплекта сервопривода. Затягивать нужно умеренно, чтобы не повредить карбоновые компоненты.

1. Поверните сустав на 90° наружу, чтобы точка крепления нижнего привода оказалась снаружи.

2. Ослабьте винт крепления (примерно на 2 оборота), чтобы можно было немного раздвинуть детали сустава.

3. Подготовьте вторую опору ноги:

0

0

- Возьмите деталь с подшипником (см. фото).
 - Вставьте винт в отверстие основной части сустава (со стороны сервопривода).

• Вставьте подшипник в отверстие второй опоры, бортиком наружу.

• Наденьте опору с подшипником на винт.

о Закрутите самоконтрящуюся гайку, используя гаечный ключ (обязательно, иначе гайка не зафиксируется).

4. Вставьте второй сервопривод (нижний сустав ноги) внутрь раздвинутого узла.

- 5. Прикрутите его вал шурупом из набора сервопривода.
- 6. Закрепите вторую опору на стопе.
- 7. Затяните ранее ослабленный винт сустава.

1.9 Установка УЗ датчика расстояния

1. Вставьте модуль в акриловую панель через отверстия под ультразвуковые излучатели.

2. Совместите отверстия на плате с монтажными отверстиями панели.

3. Наживите все четыре шурупа, предварительно вставив их в отверстия. После выравнивания модуля затяните винты, зафиксировав датчик в панели

Крепление панели к корпусу робота

Возьмите собранную панель с установленным датчиком. Совместите центральное отверстие панели с соответствующим отверстием в верхней части конструкции робота.

Вставьте винт через центральное отверстие снаружи внутрь. Зафиксируйте винт гайкой с внутренней стороны конструкции.

Подключение кабеля

Подключите четырёхпроводный кабель к пинам модуля.

Важно: убедитесь, что чёрный провод подключён к выводу GND.

Второй конец кабеля подключается к шилду (контроллеру), соблюдая ту же последовательность.

▲ Ошибки при подключении (особенно VCC ↔ GND) могут повредить модуль.

		· · · · · · · · · · · · · · · · · · ·	
Пин на модуле	Назначение	Цвет провода (по видео)	Назначение на контроллере
VCC	Питание +5 В	Красный	5V
Trig	Триггер-сигнал	Белый	D8 (или другой цифровой)
Echo	Приём сигнала	Жёлтый	D9 (или другой цифровой)
GND	Земля	Чёрный	GND

1.10 Установка модуля удаленного управления

······································		
Пин ESP-модуля	Назначение	Подключается к шилду (Arduino Uno)
VCC	Питание 3.3В	3.3V или внешний регулятор (если есть)
GND	Земля	GND
ТХ	Передача	RX (на Arduino)
RX	Приём	TX (на Arduino)

Подключение ESP-модуля к контроллеру

1.10.1 Настройка Wi-Fi подключения устройства

После получения устройства необходимо выполнить настройку параметров Wi-Fiсоединения через последовательный порт. Для этого используется специализированная утилита на ПК.

Этапы настройки:

Шаг 1. Настройка параметров СОМ-порта

• Откройте утилиту настройки (например, "串口调试助手" или "智宇科技助手" в

папке комплекта С, подпапка «8.微信模块介绍资料》).

- Установите скорость передачи данных (baud rate): 9600.
- Выберите **СОМ-порт**, соответствующий подключённому устройству (зависит от стемы)

системы).

Если модуль не виден как СОМ-порт, установите драйвер.

- Откройте папку USB 转串口 CH340 驱动安装包.
- Запустите файл установки соответствующий вашей системе (х64 или х86).

- Дождитесь завершения установки.

Шаг 2. Настройка ключа и параметров сервера

Введите следующие параметры подключения:

Параметр	Значение
KEY	2000

IP	119.23.109.47
Порт	8991

▲ Внимание: IP-адрес и порт являются фиксированными и не подлежат изменению.

□ 十六进制	清除显示 查 询	KEY: 2000	设置
-WIFI设置			串口设置
WIFI名称:	users	设置	串口号 1 _
			波特室 9600 👤
WIFI密码:	gprs	设置	校验位 None ▼
			数据位 8 ▼
IP和端口是设置			停止位 1 🗨
IP: 119.23	. 109.47 PORT: 8991	设置	

Шаг 3. Настройка параметров Wi-Fi

Введите данные для подключения к вашей Wi-Fi сети:

Поле	Требования
SSID	Только латиница и цифры , ≤16 символов
Пароль Wi-Fi	Только латиница и цифры , ≤32 символов

После ввода нажмите кнопку «设置» (Установить/Применить), чтобы отправить настройки в устройство.

После завершения всех трёх шагов модуль перезагрузится и попытается подключиться к Wi-Fi сети и серверу управления.

C)、湖南智宇	—		×
			^
2			
			~
	设	置	
WIF设置 BIFI名称: users 设置	日日日 日田 日田 日田 日田 日田 日田 日田 日田 日田 日日 日日 日日	1 9600	
	数据位	8	
IP和端口号设置 Operation IP: 119.23.109.47 PORT: 8991 设置]i	主接	

При успешном подключении светодиодный индикатор на модуле загорится постоянно.

1.10.2 Привязка устройства в приложении WeChat

После успешной настройки модуля и подключения к Wi-Fi необходимо привязать устройство к своему WeChat-аккаунту через официальный публичный аккаунт производителя.

1. Подпишитесь на официальный WeChat-паблик

• Откройте приложение **WeChat**.

• В строке поиска найдите и подпишитесь на официальный аккаунт производителя.

• Перейдите в раздел "设备管理" (Управление устройствами).

2. Выберите опцию "添加设备" (Добавить устройство)

••••○ 中国移动 幸 く 返回	^{下午10:07} 设备列表	* =
设备名称	设备ID	状态
wo	20170001	角罕 约 8
	+	

3. Введите следующие данные:

Поле	Источник
ID устройства	Указан производителем (например: 20180273)
Пароль	Последние 6 цифр ID (например: 180273)

▲Пароль по умолчанию — последние 6 символов ID устройства, если не указано иное.

●●●○○ 中国移动 令	下午10:08	* 💶
く返回	设备列表	•••
设备名称		状态
wo	20170001	解纤维
	绑定设备	
设备id		
配置密码		
取消		确定
	+	

4. Подтвердите добавление

- После ввода ID и пароля нажмите кнопку подтверждения.
- В случае успешной привязки устройство появится в списке.

1.10.3 Управление устройством через интерфейс WeChat

После того как устройство было привязано к вашему аккаунту WeChat, вы можете приступить к управлению им через интерфейс публичного аккаунта.

1. Откройте интерфейс управления

- В главном окне WeChat нажмите на **устройство в списке** (область, выделенную красным).
 - Если устройство **не отображается**, убедитесь, что:
 - о оно добавлено и привязано,
 - о оно **подключено к Wi-Fi** и находится в сети.

••••○ 中国移动 🗢 く 返回 关闭	^{下午10:15} 设备列表	* =>
设备名称	设备ID	状态
wo	20170001	角星纬形
wo	20170002	角星封耶
	+	

▲ Если список устройств пуст — необходимо сначала выполнить привязку.
 2. Переход в интерфейс управления

- После нажатия откроется панель управления устройством.
- Здесь отображаются:
 - Текущий статус соединения,
 - Функциональные кнопки (движение, поворот, измерение и др.),
 - Информация от устройства (например, данные с датчиков).

•••○ 中国移动 奈 く 返回	T 设	^{5年10:08} 备列表		* 📼
	已连接			
智能机器人 赵声	传感器123cm 当前速	度123cm/s	档位调节 🗕	0 +
	旋转 灭火		循迹 跟随	遊降 測距
	舵机1 0 舵机3	180	舵机2 0 舵机4	180
	00	180	0	180

1.10.4 Индикация состояния устройства

Светодиодный индикатор на модуле позволяет определить текущее состояние подключения и работу устройства. Ниже приведено расшифрованное поведение индикатора.

N⁰	Состояние светодиода	Значение
1	Мигает один раз при включении	Устройство успешно запущено (питание подано)
2	3 вспышки каждые 5 секунд	Отсутствуют настройки Wi-Fi
3	2 вспышки каждые 5 секунд	Wi-Fi настроен, но нет соединения с сервером
4	Постоянное свечение	Устройство подключено к серверу

А Рекомендации при настройке:

- Если индикатор не мигает вообще проверьте питание.
- Если мигает **3 раза** выполните настройку SSID и пароля Wi-Fi.
- Если мигает **2 раза** проверьте наличие интернета или правильность IP и порта.
- При постоянном свечении модуль готов к работе и управлению через WeChat.

1.10.5 Определение управляющих команд и протоколов передачи данных

Взаимодействие между WeChat-приложением, управляющим модулем и роботом осуществляется по набору текстовых команд и сообщений. Ниже представлены используемые команды и формат обмена данными.

Команды, передаваемые с клиента WeChat

При нажатии и отпускании кнопок в интерфейсе WeChat-управления, модулю отправляются следующие строки:

Действие	При нажатии	При отпускании	
Вперёд	ONA	ONF	
Назад	ONB	ONF	
Поворот влево	ONC	ONF	
Поворот вправо	OND	ONF	
Остановиться	ONE	ONF (добавлено позже)	
🗳 Пользовательская 1 (вращение)	ON1	ONa	
 Пользовательская 2 (сигнал) 	ON2	ONb	
🕏 Пользовательская 3 (движение по линии)	ON3	ONc	
🚧 Пользовательская 4 (обход препятствий)	ON4	ONd	
🜢 Пользовательская 5 (тушение огня)	ON5	ONe	
🗳 Пользовательская 6 (сброс)	ON6	ONf	
👣 Пользовательская 7 (следование)	ON7	ONg	
Пользовательская 8 (измерение расстояния)	ON8	ONh	

Управление сервоприводами (угловое позиционирование)

Для управления сервоприводами используется формат команд:

SA[угол] F — для сервопривода 1

SB[угол] F — для сервопривода 2

SC[угол] F — для сервопривода 3

SD[угол] F — для сервопривода 4

Пример	Значение	
SA100F	Установить сервопривод 1 на 100°	

Диапазон допустимых значений: **0–180 градусов**.

Ответы от устройства к WeChat-модулю (формат сообщений)

Формат передаваемых данных имеет следующую структуру: %SET*<KOMAHДA>*<3НАЧЕНИЕ>#

Команда	Назначение	Пример	Расшифровка
J	Отображение расстояния	%SET*J*1234#	Расстояние = 1234 см
S	Отображение скорости	%SET*S*5534#	Скорость = 5534 см/с
D	Отображение текущего режима	%SET*D*02#	Текущий режим = 2

▲ Ограничения

- Все значения передаются в виде **ASCII-строк**.
- Значения должны быть только цифровыми, без символов или пробелов.

1.11 Финальная сборка и укладка проводов

На каждую из четырёх опорных точек на нижней панели наклейте по одной резиновой ножке.

Аккуратно уложите все провода (от сервоприводов, датчика и питания).

▲ Важно: провода не должны мешать вращению сервоприводов, особенно в области "пояса", "шеи" и "тазобедренных" соединений.

С помощью **пластиковых стяжек** (хомутов) зафиксируйте провода в безопасных местах. Обрежьте лишние концы стяжек.

2 Подготовка к работе

Внимание:

Перед началом работы обязательно соблюдайте приведённые выше шаги в указанной последовательности. Несоблюдение может привести к ошибкам, за которые производитель/продавец не несёт технической ответственности.

Шаг 1. Копирование материалов

Сразу после открытия содержимого архива, полностью скопируйте все файлы и папки на компьютер.

Это обеспечит корректную установку драйверов и стабильную работу программного обеспечения.

Шаг 2. Подготовка среды разработки

Перед первым включением платы:

- Перейдите к папке «2.**开**发环**境**» (2. Среда разработки») в архиве А.
- Внимательно изучите материалы об установке драйверов и программной среды

Arduino.

Шаг 3. Подключение и установка ПО

Согласно видеоруководству и инструкциям выше:

• Выполните подключение основной платы и всех проводов.

• Установите необходимые драйверы и вспомогательное ПО, поставляемое в

комплекте.

Имя	Дата изменения	Тип	Размер
1.学前先看	09.06.2025 11:17	Папка с файлами	
📙 2.开发环境 🚽 🚽	02.04.2018 11:10	Папка с файлами	
📙 3.arduino 例程代码	02.04.2018 11:25	Папка с файлами	
4.视频教程	02.04.2018 11:30	Папка с файлами	
5.原理图	02.04.2018 11:12	Папка с файлами	
📙 6.Arduino面包板连线绘图软件	02.04.2018 11:12	Папка с файлами	
	02.04.2018 11:26	Папка с файлами	
🔊 Autorun	04.04.2016 18:50	Сведения для уст	1 КБ
🚟 chiyu	04.04.2016 19:02	Значок	17 КБ

Шаг 4. Обучение и практические занятия

Перейдите к практическому освоению:

• Следуйте видеоруководствам из раздела 4.视频教程 (4. Видеоуроки) в архиве В

и С:

- о уроки по работе с Arduino-комплектом,
- уроки по управлению Arduino-роботом.

В архиве А в папке 3.arduino 例程代码 помимо базового скетча для установки сервоприводов в **нулевое положение**, содержатся также другие полезные примеры:

N⁰	Название папки	Назначение
1	两足机器人舵机零点调节程序	Установка всех сервоприводов в нулевое положение
		(базовая калибровка)
2	两足机器人前进、后退、左	Скрипты движения: вперёд, назад, поворот
	转、右转程序	влево/вправо
3	两足机器人基本舞蹈案例	Демонстрация базовых танцевальных движений
		робота
4	两足机器人超声波避障程序案	Управление на основе ультразвукового датчика (обход
	例	препятствий)
5	两足机器人红外遥控控制案例	Управление роботом с помощью ИК-пульта
	程序	

★ Все скетчи можно открыть в Arduino IDE, отредактировать и загрузить в плату Arduino Uno R3 через USB.

3 Рекомендации по тестированию

Подготовка питания

- 1. Зарядите аккумуляторы 18650:
 - Установите их в зарядное устройство.
 - Красный индикатор идёт зарядка.
 - Жёлтый (или зелёный) индикатор аккумулятор полностью заряжен.
 - о ⚠ Обязательно контролируйте процесс зарядки не оставляйте без присмотра.

Примечание: Аккумуляторы часто поставляются уже частично заряженными — это нормально.

2. Установите аккумуляторы в отсек и включите питание нижней платы (нажатием на выключатель).

Особенности хода робота

• После включения двуногий робот может не двигаться по прямой.

• Заводские параметры PWM (широтно-импульсной модуляции) заданы одинаковыми, но:

- Из-за технологических допусков электродвигателей возможны различия в скорости вращения.
- В процессе обучения вы научитесь корректировать PWM-параметры, чтобы компенсировать это.

Рекомендуется сначала посмотреть обучающее видео, прежде чем проводить тестовые запуски.

✓ После завершения тестирования

• Выключайте питание, когда робот не используется — это предотвращает саморазряд батареи.

• Рекомендуется извлекать аккумуляторы, особенно при длительном хранении. Перед хранением батареи должны быть полностью заряжены.

После 10–20 минут работы — аккумуляторы нуждаются в подзарядке.

• Для извлечения аккумуляторов можно аккуратно использовать плоскую отвёртку (однако действуйте осторожно).

Важное замечание по питанию

При выполнении лабораторных работ желательно использовать питание от батарей, а не от USB.

Причины:

• USB-питание даёт недостаточный ток;

• В отдельных случаях возможен «смертельный» сбой порта при холодном запуске.

4 Обозначения элементов платы UNO R3

5 Таблица кнопок пульта дистанционного управления

