Программируемые линейные источники питания постоянного тока eTOMMENS серия eTM-L (SPD)

Инструкция по эксплуатации

CHUERONC

CALLE

Содержание

1 Обзор устройства	
1.1 Внешний вид	2
1.2 Функции клавиш	
2 Инструкция по работе с устройством	
2.1 Управление с помощью передней панели	5
2.2 Способы ввода данных	5
2.2.1 Ввод цифр	5
2.2.2 Ввод с помощью энкодера	
2.3 Настройка выходного напряжения	6
2.4 Настройка выходного тока	
2.5 Настройка защиты от перенапряжения (OVP)	
2.5.1 Настройка предельного значения защиты от перенапряжения	
2.5.2 Включение / выключение функции защиты от перенапряжения	7
2.6 Установка защиты от сверхтока (ОСР)	7
2.6.1 Настройка предельного значения защиты от перегрузки по току	7
2.6.2 Включение защиты от перегрузки по току	8
2.7 Настройка времени задержки выхода	8
2.8 Настройка функций	8
2.8.1 Восстановление заводских установок	9
2.8.2 Функция запоминания состояния выхода	
2.8.3 Ограничение максимального значения входного параметра напряжения	9
2.8.4 Ограничение максимального значения входного параметра тока	9
2.8.5 Настройка скорости передачи данных (BAUD) по интерфейсу RS232	9
2.8.6 Настройка зуммера	10
2.8.7 Настройка горячих клавиш	10
2.8.8 Настройка функции автоматической подстройки напряжения (V.SELF)	10
2.8.9 Настройка адреса устройства для связи (ADDR)	10
2.8.10 Настройка функции дистанционного измерения (Remote Sense)	10
2.8.11 Выбор протокола связи	11
2.8.12 Настройка функции мягкого старта (Soft Start)	11
2.8.13 Режим настройки энкодера	11
2.8.14 Просмотр версии программного обеспечения	12

2.8.15 Настройка реж	има триггера		12
2.8.16 Настройка триг	ггерной функции		12
2.8.17 Настройка авто	оматического отключения (тайме	epa)	12
2.8.18 Смещение вых	одного тока (калибровка нуля)		12
2.8.19 Настройка ком	пенсации потерь на проводах		12
2.8.20 Операция сохр	анения		13
2.8.21 Операция вызо	ова сохранённых параметров		13
2.9 Переключатель сост	ояния выхода		13
2.10 Функция блокиров	ки клавиатуры		13
2.11 Регудировочный эн	нколер		13
2.12 Функции защиты			14
2.13 Описание режимов	в работы		14
2.13.1 Режим стабили	изации напряжения (CV)		14
2.13.2 Режим стабили	изации тока (СС)		14
		и напряжения и тока (CV / CC)	
3. Дистанционное управле	ение		15
3.1 Настройка интерфей	йсов		15
3.1.1 Интерфейсы			15
3.1.2 Настройка связи	1		15
3.1.3 Набор SCPI-кома	анд		16
cynepoil	CHITCH		

1 Обзор устройства

1.1 Внешний вид

1. Кнопка питания	8. Отрицательный вывод удалённого измерения			
2. Функциональные кнопки	9. Положительный вывод удалённого измерения			
3. Цифровая клавиатура	10. Регулировочный энкодер			
4. Кнопки направления	11 Семисегментный дисплей			
5. Выход «минус»	12. омбинированная функциональная клавиша			
6. Клемма заземления	13. Клавиша быстрой блокировки			
7. Выход «плюс»				

Задняя панель

1. Коммуникационный интерфейс	4. Вентилятор
(стандартная комплектация — RS232, опции — RS485, USB, LAN)	охлаждения
2. Круглый управляющий разъём (возможна индивидуальная	5. Сетевой разъём
конфигурация)	питания
3. Разъём BNC, внешний триггерный вход (возможна	6. Клемма заземления
индивидуальная конфигурация)	корпуса

1.2 Функции клавиш

На передней панели расположены 24 клавиши (не считая клавиши питания), надпись над клавишей обозначает её основную функцию — для её выполнения просто нажмите клавишу. Надпись под клавишей указывает дополнительную функцию: сначала нажмите клавишу 【Shift】 (на панели отобразится «Shift»), затем нужную клавишу для выполнения этой функции. После нажатия клавиши раздаётся звуковой сигнал (при включенном звуке).

Клавиша	Основная функция	Дополнительная функция	Клавиша	Основная функция	Дополнительная функция	
0	Ввод цифры 0	Не настроена	7	Ввод цифры 7	Не настроена	
1	Ввод цифры 1	Не настроена	8	Ввод цифры 8	Не настроена	
2	Ввод цифры 2	Не настроена	9	Ввод цифры 9	Не настроена	
3	Ввод цифры 3	Не настроена		Ввод точки (для дробей)	Не настроена	
4	Ввод цифры 4	Не настроена	← 、→	Перемещение курсора влево/вправо	Нет	
5	Ввод цифры 5	Не настроена	1 , 4	Переход на следующую/предыдущую страницу	Нет	
6	Ввод цифры 6	Не настроена	Enter	Подтверждение	Нет	
U	Настройка напряжения	Не настроена		Настройка тока	Не настроена	
Save	Сохранение	Не настроена	Call	Выборка	Не настроена	
Output	Включение или отключение вывода	Нет	Lock	Блокировка	Menu	
Shift	Выбор дополнительной функции	Нет	Esc	Отмена	Нет	

2 Инструкция по работе с устройством

2.1 Управление с помощью передней панели

- 1. Все значения напряжения и тока в данном приборе и руководстве указаны в вольтах **V** и амперах **A**.
- 2. По умолчанию прибор настроен на управление с помощью передней панели. После включения питания все необходимые настройки прибора можно производить с помощью передней панели.

2.2 Способы ввода данных

2.2.1 Ввод цифр

Для ввода необходимого значения используйте цифровую клавиатуру, затем подтвердите выбор нажатием клавиши [Enter]. С помощью клавиши [Esc] при необходимости можно удалить введенное значение, после чего можно повторить ввод.

2.2.2 Ввод с помощью энкодера

В ходе работы, когда требуется непрерывная регулировка сигнала, можно использовать регулировочный энкодер. Нажатием клавиши перемещения $\{\leftarrow\}$ или $\{\rightarrow\}$ можно переместить позицию курсора соответственно влево или вправо. При повороте вправо значение увеличивается на 1, с возможностью переноса в старший разряд. При повороте влево значение уменьшается на 1, с возможностью заимствования из старшего разряда. При использовании энкодера вводимое значение вступает в силу немедленно после изменения цифры.

2.3 Настройка выходного напряжения

Нажмите клавишу [U], после чего замигает курсор параметров напряжения.

Способ 1:

Нажмите цифровые клавиши **0–9**, затем нажмите **[Enter]** для задания выходного напряжения.

Способ 2:

С помощью клавиш перемещения 【←】 или 【→】 переместите курсор на требуемый разряд и поверните регулировочный энкодер для установки значения напряжения.

Пример: Настройка выходного напряжения 32.000V.

Последовательность действий:

[U] [3] [2] [.] [0] [0] [0] [Enter]

После ввода семисегментный индикатор отображает установленное значение выходного напряжения.

2.4 Настройка выходного тока

Нажмите клавишу [I], после чего замигает курсор параметров тока.

Способ 1:

Нажмите цифровые клавиши **0–9**, затем нажмите **[Enter]** для задания выходного тока.

Способ 2:

С помощью клавиш перемещения 【 】 или 【 】 переместите курсор на требуемый разряд и поверните регулировочный энкодер для установки значения тока.

Пример: Установить выходной ток 10,000 А.

Последовательность действий:

[I] [3] [.] [2] [0] [0] [Enter]

После ввода семисегментный индикатор отображает установленное значение выходного тока.

2.5 Настройка защиты от перенапряжения (OVP)

Данная функция защищает блок питания и подключенное оборудование (DUT) при превышении заданного напряжения. Перед использованием необходимо включить функцию защиты от перенапряжения и установить предельное значение. Если выходное напряжение превысит установленный лимит, выход автоматически отключится, на дисплее появится значок "OVP", а регулировка напряжения будет ограничена установленным защитным значением.

Не допускайте подачу внешнего напряжения на выходе, превышающего 120% от номинального значения, так как это может привести к повреждению внутренних компонентов устройства!

При срабатывании защиты от перенапряжения необходимо проверить внешние причины возникновения неисправности. После устранения внешних факторов питание можно восстановить с помощью кнопки ON/OFF.

2.5.1 Настройка предельного значения защиты от перенапряжения

Нажмите клавишу пролистывания 【↑】 или 【↓】, чтобы войти в меню рабочих параметров. Перелистывайте до пункта 【OVP S.】, после чего можно изменить значение порога защиты.

Способ 1:

Нажмите цифровые клавиши **0–9**, затем нажмите **[Enter]**, чтобы установить значение защиты от перенапряжения.

Способ 2:

Используйте клавиши перемещения **【←】** или **【→】** для установки курсора на требуемый разряд, затем поверните регулировочный энкодер для изменения значения порога.

Пример:

Установить значение защиты от перенапряжения **33.0 V**.

Последовательность действий:

2.5.2 Включение / выключение функции защиты от перенапряжения

Нажмите клавишу пролистывания **[** \uparrow **]** или **[** \downarrow **]**, чтобы войти в меню рабочих параметров.

Перелистывайте до пункта **【OVP E.】**, после чего можно изменить состояние функции защиты: **ON / OFF**.

2.6 Установка защиты от сверхтока (ОСР)

Функция защиты от перегрузки по току предназначена для защиты блока питания при превышении заданного значения тока нагрузки. Перед началом работы необходимо включить данную функцию и установить предельное значение тока. Когда ток нагрузки превышает установленный порог, система мгновенно отключает выходное напряжение, на дисплее появляется значок "ОСР", а диапазон регулировки тока автоматически ограничивается заданным защитным значением.

2.6.1 Настройка предельного значения защиты от перегрузки по току

Способ 1:

Нажмите цифровые клавиши **0–9**, затем нажмите **[Enter]** , чтобы задать значение защиты от сверхтока.

Способ 2:

Используйте клавиши перемещения $\{\leftarrow\}$ или $\{\rightarrow\}$ для установки курсора на требуемый разряд, затем поверните регулировочный энкодер для изменения значения защитного порога.

Пример:

Установить значение защиты от сверхтока **11.0 A**.

Последовательность действий:

2.6.2 Включение защиты от перегрузки по току

2.7 Настройка времени задержки выхода

Для стандартных моделей данной серии эта функция неактивна.

Нажмите 【Shift】, затем нажмите 【Lock】, после чего клавишами пролистывания 【↑】 и 【↓】 войдите в меню рабочих параметров. Перелистывайте до пункта 【DELAY】, где можно изменить параметр задержки.

Примечание: Данный параметр *Delay* применяется только при автоматическом циклическом выполнении (авторежиме). Поэтому при сохранении настроек в ячейку памяти значение *Delay* также сохраняется в выбранной позиции памяти.

2.8 Настройка функций

Нажмите 【Shift】, затем 【Lock】, после чего клавишами пролистывания 【↑】 и 【↓】 выберите необходимый пункт меню. При пролистывании вниз 【↓】 пункты располагаются в следующем порядке:

- 1. **INIT** восстановление заводских настроек
- 2. **OUT** состояние выхода
- 3. **V М** максимальное значение для ввода напряжения
- 4. І М максимальное значение для ввода тока
- 5. **BAUD** скорость передачи данных (битрейт)
- 6. ВЕЕР звуковая индикация
- 7. **H.** горячие (быстрые) клавиши
- 8. **V.SELF** автоматическая подстройка напряжения
- 9. **ADDR** адрес устройства для связи
- 10. **SENSE** функция компенсации (remote sense)
- 11. СОМ Р коммуникационный протокол
- 12. **SL ON** мягкий старт (Slow Start)
- **13**. **EC--** настройка энкодера
- 14. **VER** версия программного обеспечения
- 15. **Т S** режим триггера
- **16**. **Т F** функция триггера
- 17. **A OFF** автоотключение по таймеру
- 18. Т DAТ смещение тока (калибровка нуля)
- 19. **WL MR** компенсация потерь на проводах

2.8.1 Восстановление заводских установок

Нажмите **(Shift)**, затем **(Lock)**, чтобы войти в меню **MENU**. Клавишами **(↑)** / **(** \downarrow **)** пролистайте до пункта **"INIT"**. С помощью клавиш **(↑)**, **(** \downarrow **)** или поворотом энкодера выберите значение **ON**.

После активации функции устройство выйдет из меню, и все параметры будут сброшены к заводским значениям.

2.8.2 Функция запоминания состояния выхода

Нажмите **(Shift)**, затем **(Lock)**, чтобы войти в **MENU**. Клавишами **(** \uparrow **)** / **(** \downarrow **)** пролистайте до пункта **"OUT"**. С помощью клавиш **(** \uparrow **)**, **(** \downarrow **)** или энкодера выберите требуемый режим.

Доступные режимы:

- **0 F.DF** при включении питания выход выключен, параметры сбрасываются на значения по умолчанию (5 V / 1 A).
- **1 F.ST** при включении питания выход выключен, параметры восстанавливаются из пользовательских настроек.
- **2 O.ST** при включении питания выход включён, параметры восстанавливаются из пользовательских настроек.

2.8.3 Ограничение максимального значения входного параметра напряжения

Нажмите **[Shift]** , затем **[Lock]** , чтобы войти в **MENU**. Клавишами **[** \uparrow **]** / **[** \downarrow **]** пролистайте до пункта "V M".

Задайте параметр с помощью цифровых клавиш или энкодера.

Установленное значение ограничивает максимальное возможное значение, задаваемое через:

- клавишу **(U-CV)**
- команды по интерфейсу связи.

Пример:

Если значение **U Max** установлено на **15 В**, то установка напряжения через **【U-CV】** или по командам связи **не сможет превысить 15 В**.

2.8.4 Ограничение максимального значения входного параметра тока

Нажмите **(Shift)**, затем **(Lock)**, чтобы войти в **MENU**. Клавишами **(** \uparrow **)** / **(** \downarrow **)** пролистайте до пункта **"I M"**.

Принцип настройки полностью аналогичен пункту "V M".

2.8.5 Настройка скорости передачи данных (BAUD) по интерфейсу RS232

Нажмите 【Shift】, затем 【Lock】, чтобы войти в меню MENU. Клавишами 【↑】 и 【↓】 пролистывайте пункты меню до появления "BAUD". Поверните энкодер для установки кода скорости передачи данных, соответствующего требуемому значению скорости обмена при удалённом управлении устройством через компьютер.

В таблице ниже приведена таблица соответствия кодов и скорости передачи данных.

Код	1.2K	2.4K	4.8K	9.6K	19.2K	38.4K	57.6K	11.52K
Скорость передачи (бит/с)	1200	2400	4800	9600	19200	38400	57600	115200

2.8.6 Настройка зуммера

Нажмите 【Shift】, затем 【Lock】, после чего клавишами пролистывания 【↑】 и 【↓】 выберите соответствующий пункт меню.

В данном пункте можно включить или выключить работу звукового сигнала (бипера).

2.8.7 Настройка горячих клавиш

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами **(↑)** / **(↓)** пролистайте меню до отображения **"H."**. С помощью клавиш **(↑)**, **(↓)** или вращением энкодера выберите состояние: **включено** / **выключено**.

При включении этой функции, при нажатии любой цифровой клавиши **0–9** прибор автоматически вызывает параметры, сохранённые в соответствующей группе памяти (группа 0–9).

2.8.8 Настройка функции автоматической подстройки напряжения (V.SELF)

Нажмите **[Shift]** , затем **[Lock]** , после чего клавишами **[** \uparrow **]** / **[** \downarrow **]** пролистайте меню до отображения "V.".

С помощью клавиш **[** \uparrow **]** , **[** \downarrow **]** или энкодера выберите состояние: включено / выключено.

При включённой функции прибор автоматически контролирует значение напряжения на выходе и корректирует его, снижая отклонение от установленного значения.

2.8.9 Настройка адреса устройства для связи (ADDR)

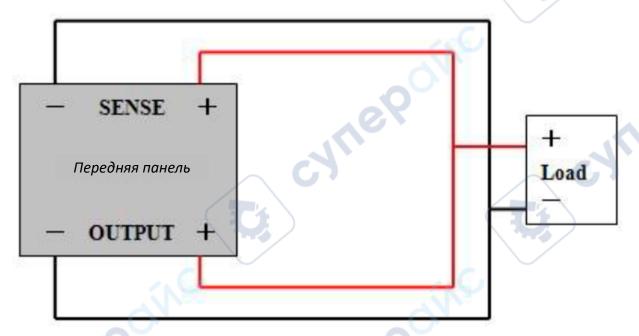
Нажмите **[Shift]**, затем **[Lock]**, после чего клавишами **[** \uparrow **]** / **[** \downarrow **]** пролистайте меню до отображения "ADDR". С помощью клавиш **[** \uparrow **]** , **[** \downarrow **]** , энкодера или цифровых клавиш установите требуемый адрес.

Примечание: диапазон допустимых адресов — $1 \sim 250$.

2.8.10 Настройка функции дистанционного измерения (Remote Sense)

При потреблении нагрузкой большого тока на соединительных проводах между источником питания и нагрузкой возникает падение напряжения. В режиме стабилизации напряжения функция удалённого измерения (Sense) позволяет автоматически компенсировать это падение на проводах нагрузки.

Перед использованием функции удалённого измерения необходимо:


- 1. Перевести источник питания в режим удалённого измерения;
- 2. Убедиться, что выход отключён функция может быть включена только при выключенном выходе.

Рекомендуется использовать для линий Sense витую пару, и не прокладывать их вплотную к силовым проводам нагрузки.

Для включения/выключения функции:

- 1. Нажмите **(Shift)**, затем **(Lock)**.
- 3. С помощью 【↑】, 【↓】 или энкодера выберите: **включено / выключено**.

Схема ниже иллюстрирует корректное подключение проводов:

2.8.11 Выбор протокола связи

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами пролистывания **(** \uparrow **)** / **(** \downarrow **)** перейдите к пункту **"COM-P"**. С помощью клавиш **(** \uparrow **)** , **(** \downarrow **)** либо вращением энкодера выберите протокол **SCPI** или **Modbus**.

Функциональные параметры:

- **OFF** означает отключение функции замедленного запуска;
- **CV** означает увеличение времени нарастания напряжения в режиме стабилизации напряжения;
- СС означает увеличение времени нарастания тока в режиме стабилизации тока.

2.8.12 Настройка функции мягкого старта (Soft Start)

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами пролистывания **(↑)** / **(↓)** перейдите к пункту меню "SLON". С помощью клавиш **(↑)**, **(↓)** или вращением энкодера выберите требуемый режим работы функции.

2.8.13 Режим настройки энкодера

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами **(↑)** / **(↓)** пролистайте меню до пункта **"EC"**. С помощью клавиш **(↑)**, **(↓)** или энкодера выберите необходимую функцию.

Функции:

- **О.N** отключение функции настройки энкодера;
- 1.S U для регулировки напряжения не требуется нажимать клавишу **(V set)**, напряжение можно изменять непосредственно вращением энкодера;
- 2.S I для регулировки тока не требуется нажимать клавишу $\{I \text{ set }\}$, ток можно изменять непосредственно вращением энкодера.

2.8.14 Просмотр версии программного обеспечения

Нажмите **[Shift]**, затем **[Lock]**, после чего клавишами **[** \uparrow **]** / **[** \downarrow **]** пролистайте меню и выберите пункт "VER", чтобы просмотреть версию установленного программного обеспечения.

2.8.15 Настройка режима триггера

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами пролистывания **(** \uparrow **)** / **(** \downarrow **)** перейдите к пункту меню **"T S"**. С помощью клавиш **(** \uparrow **)**, **(** \downarrow **)** или вращением энкодера выберите необходимый режим.

Функции:

- 0 ІММ триггер по команде связи (немедленный программный триггер);
- 1 EXT внешний триггер;
- **2 PUL** импульсный триггер;
- **3 LEL** триггер по уровню низкого логического сигнала.

2.8.16 Настройка триггерной функции

Нажмите **(Shift)** , затем **(Lock)** , после чего клавишами **(** \uparrow **)** / **(** \downarrow **)** пролистайте меню до пункта **"Т F"**. С помощью клавиш **(** \uparrow **)** , **(** \downarrow **)** или энкодера выберите соответствующую функцию.

Функции:

• **0 Out** — при каждом срабатывании триггера состояние выхода переключается. Если выход был включён — он выключится, и наоборот.

2.8.17 Настройка автоматического отключения (таймера)

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами **(↑)** / **(↓)** найдите пункт **"A OFF"**. Установите параметр с помощью цифровых клавиш или энкодера.

Эта функция позволяет задать время автоматического отключения в диапазоне 0 ~ 99999 секунд. Когда выходная работа достигнет установленного времени, выход будет автоматически отключён.

2.8.18 Смещение выходного тока (калибровка нуля)

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами **(↑)** / **(↓)** выберите пункт **"T DAT"**. На экране будет отображено значение смещения тока при работе без нагрузки.

Если при работе в режиме холостого хода (без нагрузки) индикация тока отличается от нуля, нажмите **[Shift] + [Esc]**, чтобы выполнить очистку смещения тока. Скорректированное значение будет сохранено в пункт **"T DAT"**.

2.8.19 Настройка компенсации потерь на проводах

Нажмите **(Shift)**, затем **(Lock)**, после чего клавишами **(↑)** / **(↓)** перейдите к пункту **"WL mR"**. Установите значение сопротивления проводов (в миллиомах) с помощью клавиш **(↑)**, **(↓)**, энкодера или цифровых клавиш.

2.8.20 Операция сохранения

Источник питания может сохранять наборы часто используемых параметров в 100 группах энергонезависимой памяти. Это обеспечивает удобное и быстрое восстановление нужных конфигураций.

В состав сохраняемых параметров входят:

- установленное выходное напряжение;
- установленный выходной ток;
- значение защиты от перенапряжения (OVP);
- значение защиты от сверхтока (ОСР);
- состояние функции защиты от перенапряжения;
- состояние функции защиты от сверхтока;
- время задержки (Delay).

Для сохранения параметров:

- 1. Нажмите клавишу **(Save)**;
- 2. Поверните энкодер для выбора номера группы памяти;
- 3. Нажмите **[Enter]** для сохранения текущих рабочих параметров.

Пример: сохранение в ячейку памяти № 5

Нажмите:

[Save] [5] [Enter]

2.8.21 Операция вызова сохранённых параметров

- 1. Нажмите клавишу 【Call】;
- 2. Поверните энкодер для выбора номера группы памяти;
- 3. Нажмите **[Enter]** , чтобы загрузить сохранённые параметры соответствующей группы.

Пример: вызов параметров из ячейки № 5

Нажмите:

[Call] [5] [Enter]

2.9 Переключатель состояния выхода

Клавиша **【On/Off】** на передней панели управляет включением и отключением выхода.

2.10 Функция блокировки клавиатуры

Клавиша 【Lock】 на передней панели включает или выключает функцию блокировки клавиатуры. После нажатия 【Lock】, при попытке нажать любую другую клавишу на цифровом индикаторе будет отображаться "LLLL", и все клавиши и энкодер будут заблокированы, кроме:

- Lock
- On/Off

2.11 Регулировочный энкодер

При нажатии на регулировочный энкодер осуществляется переключение позиции курсора.

2.12 Функции защиты

Прибор оснащён следующими защитами:

- защитой от перенапряжения (OVP);
- защитой от сверхтока (ОСР);
- защитой от перегрева (ОТР).

Порог срабатывания защиты от перенапряжения задаётся через пункт меню **【OVP S】** Порог срабатывания защиты от сверхтока задаётся через **【OCP S】**.

Защита от перегрева (ОТР)

При возникновении аномально высокой температуры во время работы прибора выход будет автоматически отключён для обеспечения безопасности пользователя и защиты устройства.

2.13 Описание режимов работы

2.13.1 Режим стабилизации напряжения (CV)

(1) Подключение нагрузки к выходу

В целях безопасности подключайте нагрузку к выходным клеммам (+) и (–) при отключённом выходе.

(2) Ввод требуемого значения ограничения тока

Нажмите 【1】, чтобы войти в режим ввода уставки тока. В этом режиме установленное значение можно изменить с помощью цифровых клавиш или регулировочного энкодера.

После установки желаемого значения ограничение тока будет применено.

(3) Ввод требуемого значения выходного напряжения

Нажмите **【U】**, чтобы войти в режим ввода уставки напряжения. В этом режиме установленное значение можно изменить с помощью цифровых клавиш или регулировочного энкодера.

После ввода новое значение выходного напряжения будет зафиксировано.

(4) Включение выхода

Нажмите **【On/Off】**, после чего выход будет включён. На дисплее будут отображаться фактические измеренные значения выходных параметров.

(5) Проверка работы источника в режиме стабилизации напряжения

Убедитесь, что индикатор **CV** горит. Это означает, что источник питания работает в режиме стабилизации напряжения.

Если же горит индикатор **СС**, значит прибор перешёл в режим стабилизации тока. Для возвращения в режим CV необходимо увеличить установленное значение ограничения тока.

2.13.2 Режим стабилизации тока (СС)

(1) Подключение нагрузки к выходу

В целях безопасности подключайте нагрузку к выходным клеммам (+) и (–) только при выключенном выходе.

(2) Ввод требуемого значения ограничения напряжения

Нажмите 【U】, чтобы войти в режим ввода уставки напряжения. В этом режиме значение можно изменить с помощью цифровых клавиш или регулировочного энкодера.

После установки новое значение ограничения напряжения будет применено.

(3) Ввод требуемого значения выходного тока

Нажмите **【I】**, чтобы войти в режим ввода уставки тока. В этом режиме значение можно изменить с помощью цифровых клавиш или регулировочного энкодера.

После ввода новое значение выходного тока будет зафиксировано.

(4) Включение выхода

Нажмите **【On/Off】**, после чего выход будет включён. На дисплее будут отображаться фактические измеренные выходные параметры.

(5) Проверка работы источника в режиме стабилизации тока

Убедитесь, что индикатор СС горит. Это означает, что прибор работает в режиме стабилизации тока.

Если же горит индикатор CV, прибор перешёл в режим стабилизации напряжения. Для корректной работы в режиме CC необходимо увеличить значение ограничения напряжения.

2.13.3 Переключение между режимами стабилизации напряжения и тока (CV / CC)

В состоянии включённого выхода, если фактический выходной ток меньше установленного значения ограничения тока, источник питания работает в режиме

При этом:

- индикатор **CV горит зелёным цветом**;
- выходное напряжение поддерживается на установленном уровне.

Когда выходной ток достигает установленного значения ограничения тока, прибор переходит в режим стабилизации тока (СС).

В этом режиме индикатор СС горит красным цветом.

Источник питания автоматически переключается между режимами CV и CC в зависимости от условий нагрузки.

3. Дистанционное управление

Источники питания данной серии поддерживают режим удалённого управления.

Для связи с компьютером предусмотрены интерфейсы RS232 или USB, а все функции, выполняемые с передней панели, могут быть реализованы через программное обеспечение верхнего уровня (РС-программу).

3.1 Настройка интерфейсов

3.1.1 Интерфейсы

На задней панели прибора предусмотрены следующие интерфейсы для подключения: RS232, RS485, USB и LAN, как показано на схеме ниже.

3.1.2 Настройка связи

Для подключения к СОМ-порту ПК используйте следующие параметры:

(1) Скорость передачи: 9600

(2) Контроль четности: None

(3) Бит данных: 8

- (4) Стоп-бит: 1
- (5) Управление потоком: None

Примечание 1: Если блок питания не реагирует на удаленное управление, проверьте:

- Целостность кабеля связи
- Корректность подключения контактов между кабелем, блоком питания и ПК
- Надежность фиксации разъемов
- Соответствие параметров связи в ПО настройкам из раздела 3.1.2
- Использование символа конца команды перевод строки (шестнадцатеричный код 0X0A)

Примечание 2: Для возврата к локальному управлению с панели прибора нажмите клавишу **[Lock]**.

3.1.3 Набор SCPI-команд

Полный перечень программируемых команд SCPI приведен в руководстве по программированию.

Syneroing

nepoinc