Генераторы сигналов FeelTech Серия FY2300

Инструкция по эксплуатации

1 Обзор устройства	3
1.1 Описание передней панели	3
1.2 Описание правой панели	5
1.3 Описание левой панели	6
2 Включение и проверка	7
2.1 Подключение источника питания	7
2.2 Включение	7
2.3 Настройка системного языка	7
3 Пользовательский интерфейс	7
3.1 Режим отображения параметров двух каналов	
4 Управление передней панелью	9
4.1 Вывод сигнала	9
4.1.1 Выбор выходного канала	
4.1.2 Выбор формы волны	
4.1.3 Настройка частоты	
4.1.4 Настройка амплитуды	
4.1.5 Установка смещения (Offset)	
4.1.6 Настройка скважности (для прямоугольного сигнала)	
4.1.7 Настройка фазы	
4.1.8 Включение выхода каналов	
4.1.9 Пример: Вывод синусоидального сигнала	16
4.2 Функция пакетного импульсного сигнала (Burst)	17
4.3 Функция частотомера и счётчика импульсов	
4.3.1 Включение частотомера	
4.3.2 Установка счётчика	
4.4 Режим свипирования (Sweep)	
4.5 Системные настройки и вспомогательные функции	24

Содержание

1 Обзор устройства

1.1 Описание передней панели

Передняя панель разделена на несколько удобных в управлении функциональных зон. Ниже описан блок управления на передней панели и интерфейс экрана.

Nº	Наименование	Описание		
3		Карание Последовательное переключение между формами волны: синусоидальная, прямоугольная, треугольная и другими типами.		
		Переключение между частотомером и счетчиком для измерения частоты, периода, рабочего цикла и положительной ширины импульса внешнего входного сигнала.		
	Функциональные клавиши	— Ввод сигнала постоянного и переменного		
1	быстрого доступа, используемые для переключения функций	тока. — Переключение времени затвора: 1 секунда, 10 секунд и 100 секунд.		
	генератора сигналов	— Работа в двухканальном режиме		
		одновременно с измерением частоты.		
		Возможна работа с волнами разных форм: синусоидальной, прямоугольной, пилообразной. — Сканирование четырех параметров: частота, амплитуда, смещение		
		и рабочий цикл.		
		— Поддержка двух методов сканирования:		
		линейного и логарифмического.		

		 Настройка системных параметров и дополнительных функций. — Сохранение до 20 наборов параметров, таких как частота, амплитуда, смещение и фаза. — Настройка синхронизации параметров канала 1 и 2. — Переключение между китайским и английским языками. — Включение и отключение звукового сигнала. — Поддержка каскада из нескольких устройств. — Переключение между ведущим и ведомым устройствами в режиме каскада. 		
2	LCD-дисплей	2.4-дюймовый TFT цветной ЖК-дисплей с разрешением 320×240. Подробную информацию		
3	Кнопки меню	См. в разделе «интерфеис пользователя». Кнопки F1 ~ F5 соответствуют пунктам меню, отображаемым на LCD-дисплее. Нажмите соответствующую кнопку, чтобы		
4	Колесико регулировки	 активировать представленный подпункт меню. Во время настройки используйте колесико для увеличения (поворот по часовой стрелке) или уменьшения параметров (поворот против часовой стрелки). При настройке частоты нажмите на колесико, чтобы изменить единицу измерения. В режиме сканирования, нажмите на колесико, чтобы запустить/остановить сизикорацию 		
5	Клавиши направления	Нажмите кнопки со стрелками, чтобы выбрать нужное значение при настройке параметров.		
6		 Используется для управления выходом CH1, а также для перехода в меню настройки CH1. При нажатии этой кнопки, канал CH1 включается (индикатор загорается), этот разъем выводит сигнал с текущими настройками канала CH1. При повторном нажатии данной кнопки, 		

Клавиши управления каналами	— Используется для управления выходом CH2, а также для перехода в меню настройки CH2.	
	 При нажатии этой кнопки, канал CH2 включается (индикатор загорается), этот разъем выводит сигнал с текущими настройками канала CH2. При повторном нажатии данной кнопки, канал CH2 выключится, индикатор погасне 	

1.2 Описание правой панели

На рисунке изображена правая панель прибора. На правой панели устройства слева направо расположены 4 разъема BNC, а именно выходные разъемы CH2, CH1, разъем EXT.IN и выходной разъем синхронизации сигнала TTL_IO.

1. Выходной разъем СН2

Разъем BNC, номинальное выходное сопротивление которого составляет 50 Ом. Когда канал CH2 включен (загорается световой индикатор), разъем выводит сигнал с текущими настройками канала CH2.

2. Выходной разъем СН1

Разъем BNC, номинальное выходное сопротивление которого составляет 50 Ом.

Когда канал CH1 включен (загорается световой индикатор), разъем выводит сигнал с текущими настройками канала CH1.

3. Разъем для ввода сигнала EXT.IN

Разъем BNC, входное сопротивление которого составляет 100 КОм. Он используется для ввода сигналов для измерения.

4. Разъем [TTL.IO]: Синхронизация вывода СН1 и TTL/ Ввод каскадного сигнала.

1) При отсутствии каскадирования выходное сопротивление будет меньше или равно 50 Ом, которое обычно используется для вывода сигнала синхронизации CH1., LVTTL прямоугольной формы и выходной амплитудой 3,3 В.

2) При активном каскадировании и работе в режиме ведомого устройства разъём используется в качестве интерфейса внешнего сигнала. Входной импеданс превышает 100КОм.

Внимание!

Во избежание повреждение прибора, напряжение входного сигнала для разъема EXT.IN не должно превышать диапазон ±20Vac+dc. Для разъема TTL_IO напряжение входного сигнала не должно превышать DC5V.

1.3 Описание левой панели

На рисунке изображена левая панель прибора. Слева направо расположены 3 разъема. Разъем для подключения источника питания (наружный диаметр 5,5 мм, внутренний диаметр 2,1 мм), USB-В разъем и кнопка питания.

1. Разъем для источника питания постоянного тока (Внешний диаметр 5,5 мм, внутренний диаметр 2,1 мм)

Данный генератор сигналов совместим с источниками питания с напряжением 5V±0.5V, потребляемый ток: 500 мА. Максимальная мощность не должна превышать 5 Вт. Также возможно питание от мобильного источника питания постоянного тока 5V, образуя портативный источник сигнала.

Внимание!

Для обеспечения нормальной работы прибора, используйте только оригинальные источники питания.

2. USB-разъем

Используется для подключения к компьютеру и работы с ним. Программирование устройства через специальное программное обеспечение на ПК.

3. Кнопка питания

Для включения прибора переведите переключатель в положение «ВКЛ», для отключения – в положение «ВЫКЛ».

2 Включение и проверка

2.1 Подключение источника питания

Для подключения к разъему питания постоянного тока 5V используйте адаптер питания, который идет в комплекте поставки. Данный генератор сигналов совместим с источниками питания с напряжением 5V±0.5V, подача тока более 500mA, потребляемая мощность всего прибора менее 5W.

2.2 Включение

После корректного подключения источника питания переведите кнопку питания в положение «ВКЛ». После включения прибор начнет выполнять процесс инициализации и самотестирования. После завершения самотестирования на экране отобразится основное меню. Если прибор не включается, изучите инструкцию в разделе «Устранение неполадок».

2.3 Настройка системного языка

Серия генераторов сигналов FY6200 поддерживает два системных языка: китайский и английский. Вы можете выбрать нужный язык в разделе: SYS→CONF / 配置

3 Пользовательский интерфейс

Пользовательский интерфейс FY2300 включает четыре режима отображения: режим отображения параметров двух каналов, расширенный режим отображения одного канала, режим отображения дополнительных функций и режим отображения системных настроек.

3.1 Режим отображения параметров двух каналов

В верхней половине экрана будет отображаться выбранный в данный момент канал, параметры которого можно изменить. Выбирайте канал с помощью кнопок CH1 и CH2.

Nº	Описание		
1	Строка состояния текущего выбранного канала		
	Отображение текущего канала, параметры которого можно		
	настроить.		
2	Выбор текущей формы сигнала		
	Отображает название выбранной в данный момент формы сигнала.		
	Например, "CH1=Sine" означает, что текущая форма сигнала для CH1		
	— синусоида.		
	Форму сигнала можно изменить, нажав кнопку WAVE.		
	Кроме того, форма сигнала может быть быстро изменена		
	путём поворота ручки ADJ, когда активирована функция		
	переключения формы сигнала.		
3	Состояние выхода текущего канала		
	Отображает, включен или выключен выход текущего канала.		
	Состояние выхода можно изменить, с помощью кнопок СН1 и СН2		
	на передней панели.		
4	Ослабление сигнала		
	Отображает состояние ослабления сигнала текущего канала.		
	Доступны варианты ослабления 0 дБ и 20 дБ на выбор пользователя.		
	Нажмите кнопку 🔽 , чтобы войти в режим Single Channel Extension		
	(Расширение одного канала). Нажмите кнопку АТТЕ, чтобы изменить		
	значение ослабления.		

5	Форма сигнала
	Отображает диаграмму текущей формы сигнала (включая
	произвольные формы).
6	Панель меню
	Отображает доступные для управления параметры.
7	Частота
	Отображает значение частоты текущего канала.
	 Нажмите кнопку FREQ, чтобы выделить параметр.
	 Используйте ручку ADJ и кнопки со стрелками для изменения
	значения.
8	Амплитуда
	Отображает значение амплитуды текущего канала.
	 Нажмите кнопку АМРL, чтобы выделить параметр.
	• Используйте ручку ADJ и кнопки со стрелками для изменения
	значения.
9	<u>Смещение (Offset)</u>
	Отображает значение постоянного смещения (DC Offset) текущего
	канала.
	 Нажмите кнопку OFFS, чтобы выделить параметр.
	• Используйте ручку ADJ и кнопки со стрелками для изменения
	значения.
10	<u>Рабочий цикл (Duty Cycle)</u>
	Отображает значение рабочего цикла текущего канала.
	 Нажмите кнопку DUTY, чтобы выделить параметр.
	 Используйте ручку ADJ и кнопки со стрелками для изменения
	значения.
11	<u>Фаза (Phase)</u>
	Отображает значение фазы текущего канала.
	• Нажмите кнопку 🔽, чтобы войти в режим Single Channel
	Extension (Расширение одного канала).
	 Нажмите кнопку РНАЅ, чтобы выделить параметр.
	• Используйте ручку ADJ и кнопки со стрелками для изменения
	значения.
12	Параметры невыбранного канала
	Отображает параметры невыбранного канала, включая: Частоту;
	Амплитуду; Смещение (Offset); Фазу; Рабочий цикл (Duty Cycle);
	Состояние выхода.
	Эти параметры нельзя изменить напрямую в данном интерфейсе.
	Если требуется изменить параметры, необходимо переключиться на
	нужный канал.

4 Управление передней панелью

4.1 Вывод сигнала

Серия **FY2300** может выводить различные формы сигнала (синусоида, прямоугольный импульс, треугольник/пила, импульс, шум и т.д.) через один из каналов отдельно или одновременно через оба канала.

При запуске по умолчанию оба канала настроены на вывод синусоидальной волны с частотой **10 кГц** и амплитудой **10 Врр**. Пользователь может настроить устройство для вывода различных форм сигналов.

4.1.1 Выбор выходного канала

Кнопки CH1 и CH2 на передней панели используются для переключения активного канала. По умолчанию при включении прибора выбран канал CH1. В пользовательском интерфейсе параметры CH1 отображаются в верхней части экрана, а рамка индикатора состояния канала выделена желтым цветом.

Для переключения на **CH2** необходимо нажать кнопку **CH2** на передней панели. После этого параметры **CH2** отобразятся в верхней части экрана, а рамка индикатора состояния канала изменится на **синий цвет**. После выбора необходимого канала пользователь может задать форму сигнала и его параметры.

Примечания:

• Каналы CH1 и CH2 нельзя выбрать одновременно.

• Настройка параметров осуществляется поочередно: сначала для **CH1**, затем для **CH2**.

• Если требуется синхронное изменение параметров двух каналов, воспользуйтесь функцией синхронизации.

4.1.2 Выбор формы волны

FY2300 может выдавать следующие функции/формы сигналов:

- Синусоида
- Прямоугольная волна
- Треугольная волна
- Восходящая пилообразная волна
- Нисходящая пилообразная волна
- Импульс Лоренца
- Многочастотная волна
- Шум
- Электрокардиограмма
- Трапецеидальный импульс
- Импульс Sinc
- Узкий импульс
- Гауссовский белый шум
- Ступенчатый треугольник
- Положительный шаг
- Обратный шаг
- Положительная экспонента
- Обратная экспонента
- Падающая положительная экспонента
- Падающая обратная экспонента
- Положительный логарифм

- Обратный логарифм
- Падающий положительный логарифм
- Падающий обратный логарифм
- Линейная частотная модуляция
- Амплитудная модуляция
- Частотная модуляция
- Положительная полуволна
- Отрицательная полуволна
- Прямое выпрямление положительной полуволны
- Прямое выпрямление отрицательной полуволны
- Пользовательская форма сигнала

Нажмите кнопку WAVE, чтобы изменить выбранную форму сигнала. Или поверните ручку ADJ в режиме переключения, чтобы выбрать другую форму. Диаграмма сигнала отобразится на экране. При запуске по умолчанию выбрана форма Sine (синусоида). (Пользователи также могут настроить начальную форму. Пожалуйста, обратитесь к разделу «Сохранение и загрузка».)

Форма волны		Синусоида	Прямоу-	Треуголь-	Пилообраз	Произволь
			гольная	ная	ный	ная
Название	функции	Sine	Squr	Trgl	Ramp	Arb
	Частота	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Амплитуда	\checkmark	\checkmark	\checkmark	$\sqrt{-}$	\checkmark
Параметры	Смещение	\checkmark	\checkmark	\checkmark		\checkmark
	Фаза	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Рабочий		\checkmark			
	цикл					

Примечание: Пользовательские формы волны могут быть отредактированы и загружены с помощью программного обеспечения для управления FY2300, предоставленного FeelTech. Данное программное обеспечение и драйверы можно скачать на официальном сайте: www.feeltech.net

4.1.3 Настройка частоты

Частота является одним из важнейших параметров базовой формы волны. Диапазон настройки частоты варьируется в зависимости от типа сигнала и формы волны. Заводская настройка по умолчанию установлена на 10 кГц.

Нажмите кнопку FREQ, чтобы выбрать параметр «Частота». Затем используйте клавиши направления и колесико регулировки для настройки: с помощью клавиш направления переместите курсор в область, которую необходимо отредактировать, с помощью колесика регулировки настройте числовое значение.

При необходимости можно изменить единицы измерения частоты. Нажмите на колесико регулировки (кнопка ОК), чтобы изменить единицу измерения частоты. Доступны следующие единицы: МГц, кГц, Гц, мГц и мкГц.

CH1= SQUR	ON	OTRE
FREQ:00'020.00	0010001000)KHz
AMPL:10.00V A	TTE: OdB	ANPI
OFFS:00.00V	1	Come La
DUTY:50.0%		OFFS
PHAS:000°		UPPB
CH2= SINE	ON	DUTY
FREQ:00'010.00	00'000'000)KHz
AMPL:10.00V	DUTY: 50.	0%
OFFS:00.00V	PHAS: 000	

4.1.4 Настройка амплитуды

Диапазон настройки амплитуды зависит от установленной частоты и затухания. Изучите инструкцию «Выходные характеристики» в разделе «Функциональные параметры». По умолчанию установлено значение — 10 В (пик-пик).

Нажмите кнопку <u>АМРЦ</u>, чтобы выделить параметр "Амплитуда". После этого используйте клавиши направления и колесико регулировки для настройки значения амплитуды: с помощью клавиш направления переместите курсор в область, которую необходимо отредактировать, с помощью колесика регулировки настройте числовое значение.

Краткое пояснение:

1 В чем разница между амплитудой в Vpp и соответствующим значением в единицах Vrms?

Ответ:

Vpp — это единица измерения амплитуды сигнала от пика до пика, а Vrms — это единица эффективного значения сигнала. Единица по умолчанию — Vpp.

Пояснение:

Для различных форм сигналов соотношение между Vpp и Vrms различается. Соотношение этих двух единиц показано на рисунке ниже (в качестве примера взята синусоида).

Согласно приведенному выше рисунку, соотношение преобразования между Vpp и Vrms выполняется по следующему уравнению:

$$Vpp = 2\sqrt{2} Vrms$$

Для примера, если текущая амплитуда составляет 5 Vpp, то для синусоидальной формы волны преобразованное значение будет 1.768 Vrms.

4.1.5 Установка смещения (Offset)

Диапазон настройки постоянного смещения (DC Offset) ограничивается настройками «Ослабление» (Attenuation). По умолчанию значение DC смещения установлено в 0 В.

Отображаемое на экране значение постоянного смещения — это либо значение по умолчанию, либо ранее установленное смещение. При изменении значения ослабления (Attenuation) прибор автоматически настроит значение смещения в соответствии с новым значением ослабления.

1. Нажмите кнопку OFFS, чтобы выделить значение смещения.

2. Используйте кнопки направления и регулировочный энкодер, чтобы задать нужное значение.

3. Нажимайте кнопки направления, чтобы переместить курсор, и поворачивайте регулировочный энкодер, чтобы установить требуемое значение.

4.1.6 Настройка скважности (для прямоугольного сигнала)

Скважность (duty cycle) определяется как процентное соотношение времени нахождения сигнала в высоком состоянии к полному периоду прямоугольного сигнала. Данный параметр применяется только при выборе прямоугольного сигнала (Square Wave).

Диапазон настраиваемых значений скважности зависит от установленной частоты. Допустимые пределы см. в спецификации прибора. Значение по умолчанию — 50%.

Изменение параметра скважности:

1. Нажмите программную кнопку «Скважность» Duty, чтобы выделить данный параметр.

2. Используйте **кнопки навигации**, чтобы переместить курсор и выбрать разряд, который нужно изменить.

3. Поверните регулировочный энкодер, чтобы установить требуемое значение скважности.

Дополнительно:

• Прибор позволяет регулировать скважность в диапазоне 0.1% – 99.9%.

• Если в режиме настройки скважности нажать регулировочный энкодер (кнопку ОК), значение скважности сбросится до 50%

CH1= SQUR ON FREQ: 00'010.000'000'000KHz	FREQ
AMPL:10.00V ATTE: 0dB OFFS:00.00V	AMPL
DUTY: 50.0% PHAS: 000°	OFFS
CH2= SINE ON FREQ: 00'010, 000'000'000KHz	DUTY
AMPL:10.00V DUTY: 50.0% OFPS:00.00V PHAS: 000°	V

4.1.7 Настройка фазы

Диапазон настраиваемых значений начальной фазы составляет от 0° до 359.9°. Значение по умолчанию — 0°.

На экране отображается текущее значение начальной фазы, которое может быть значением по умолчанию или ранее установленным пользователем.

1. Нажмите кнопку **V**, чтобы войти в режим **Single Channel Extension** (Расширение одного канала).

2. Нажмите кнопку PHAS, чтобы выделить значение фазы.

3. Используйте кнопки навигации и регулятор, чтобы задать нужное значение.

4. Нажимайте кнопки навигации, чтобы переместить курсор, и поворачивайте регулятор, чтобы установить значение фазы.

CH1= SINE ON FREQ: 00'010.000'000'000KHz	PHAS
AMPL: 1. 000V ATTE: -20dB OFFS: 00. 00V	ATTE
DUTY: 50. 0% PHAS: 000°	TRIG
*****TRIG*****	No.
No. :0000001	

4.1.8 Включение выхода каналов

После настройки параметров выбранной формы сигнала необходимо включить канал для вывода.

По умолчанию при включении устройства оба выхода CH1 и CH2 активированы, при этом светятся индикаторы над кнопками CH1 и CH2.

- Для канала СН1 доступны два способа:
- 1. Если вы находитесь в режиме настройки параметров волны и выбран канал СН1,

с помощью кнопки СН1, включите/выключите выход для данного канала.

2. Находясь в любом другом режиме или в случае, когда канал CH1 не выбран, нажмите кнопку CH1, чтобы выбрать данный канал, после чего с помощью кнопки CH1, включите/выключите выход для данного канала.

- Для канала СН2 доступны два способа:
- **1.** Если вы находитесь в режиме настройки параметров волны и выбран канал СН2,

с помощью кнопки СН2, включите/выключите выход для данного канала.

2. Находясь в любом другом режиме или в случае, когда канал CH2 не выбран, нажмите кнопку **CH2**, чтобы выбрать данный канал, после чего с помощью кнопки **CH2**, включите/выключите выход для данного канала.

4.1.9 Пример: Вывод синусоидального сигнала

В данном разделе описывается процесс вывода синусоидального сигнала через разъём CH1 с частотой 20 кГц, амплитудой 2.5 Врр, смещением 1.6 BDC и начальной фазой 90.9°.

Порядок настройки:

1. Выбор выходного канала: Нажмите кнопку CH1 для выбора канала. В верхней части экрана рамка индикатора состояния CH1 будет выделена жёлтым цветом.

2. Выбор формы сигнала: Нажмите кнопку **WAVE**, затем выберите синусоидальный сигнал. В центральной части экрана появится изображение синусоидальной волны.

3. Настройка частоты: Нажмите программную кнопку «Частота» (Frequency), чтобы выделить параметр. При необходимости используйте ▲ для переключения на нужный параметр. Используйте кнопки навигации, чтобы переместить курсор на нужный разряд, затем поверните регулировочный энкодер, чтобы установить значение. Установите частоту: 20.000 кГц.

00'0<mark>2</mark>0. 000'000'000kHz

4. Настройка амплитуды: Нажмите программную кнопку «Амплитуда» (Amplitude), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы задать значение 2.5 Врр.

5. Настройка смещения: Нажмите программную кнопку «Смещение» (Bias), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы задать значение 1.6 BDC.

6. Настройка фазы: Нажмите ▼, чтобы перейти к дополнительным параметрам. Нажмите программную кнопку «Фаза» (Phase), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы установить значение 90.9°.

7. Включение выхода сигнала: Нажмите кнопку СН1, чтобы включить выход сигнала. Светодиод СН1 загорится, указывая на активный выход. Разъём СН1 начнёт выводить синусоидальный сигнал с заданными параметрами.

8. Наблюдение за выходным сигналом: Подключите разъём CH1 генератора FY2300 к осциллографу с помощью BNC-кабеля. На экране осциллографа отобразится сгенерированный синусоидальный сигнал.

4.2 Функция пакетного импульсного сигнала (Burst)

Генератор FY2300 может генерировать пачку импульсов (сигнал с заданным количеством циклов) с использованием стандартных форм сигналов, таких как синусоидальный (sine), прямоугольный (square), треугольный/пилообразный (Triangle/Ramp), шум (noise), а также произвольные формы сигналов (arbitrary waveforms).

Прибор поддерживает управление выходом пачки импульсов с помощью следующих источников триггера:

- Внутренний CH2 (Internal CH2)
- Ручной триггер (Manual)
- Внешний триггер (External trigger source)

Включение режима Burst:

1. Нажмите кнопку **У** в режиме настройки параметров **СН1**.

2. Затем нажмите кнопку TRIG, чтобы перейти к функции пачки импульсов (Burst Function).

3. Повторно нажимайте кнопку TRIG, чтобы выбрать источник триггера среди следующих вариантов: CH2, Ext. и MANU.

4. После выбора источника триггера генератор будет выводить пачку импульсов в соответствии с текущими настройками.

Установка количества циклов пачки импульсов:

• При включенной функции **Burst** нажмите кнопку **No.**, чтобы установить количество циклов.

• Используйте кнопки направления и регулятор, чтобы задать значение от **1** до **1048575**.

Режимы работы:

• **NORMAL:** Функция пачки импульсов отключена.

• CH2 Trigger: CH1 будет генерировать пачку импульсов при генерации импульса на CH2.

• Ext. Trigger: CH1 будет генерировать пачку импульсов при подаче импульса на разъем EXT.IN.

• **MANU Trigger:** Пользователь может запустить пачку импульсов вручную, нажав на регулятор (**OK**).

4.3 Функция частотомера и счётчика импульсов

Генератор **FY2300** оснащён функцией **частотомера и счётчика импульсов**, позволяя измерять:

- Частоту внешнего сигнала
- Период сигнала
- Скважность (duty cycle)
- Длительность положительного импульса
- Длительность отрицательного импульса

При этом частотомер может работать одновременно с режимом двухканального вывода сигналов.

4.3.1 Включение частотомера

- 1. Нажмите кнопку «MEAS» на передней панели для включения частотомера.
- 2. Откроется интерфейс настроек частотомера.
- 3. Входной измеряемый сигнал подаётся через разъём EXT.IN.
- 4. Результаты измерений отображаются в реальном времени.

5. Минимальная измеряемая частота: 0.01 Гц (при времени измерительного затвора 100 с).

Переключение между функциями частотомера и счётчика импульсов:

• Нажмите программную кнопку «Счётчик» (Coun) для включения режима счёта импульсов.

При этом кнопка «Счётчик» изменится на «Частота» (Freq).

• Повторное нажатие позволит переключаться между режимами измерения частоты и счёта импульсов.

Когда частотомер/счётчик включен, нажмите кнопку **STOP**, чтобы приостановить измерение, и кнопку **ZERO**, чтобы сбросить значения.

Важные примечания:

- Входной сигнал на EXT.IN должен иметь амплитуду не менее 1.5 В.
- Максимально допустимое входное напряжение для EXT.IN: 20 В.

4.3.2 Установка счётчика

Настройка времени измерительного затвора (Gate Time)

- Нажмите программную кнопку «Затвор» (Gate) для выбора времени измерения.
 - По умолчанию установлено 1 с. Для низкочастотных сигналов рекомендуется использовать время окна "10с".

Время затвора	Разрешение измерения частоты
1 c	1 Гц
10 c	0.1 Гц
100 c	0.01 Гц

Настройка режима входного сигнала (связь по переменному/постоянному току)

Генератор FY2300 поддерживает настройку режима входного сигнала:

- AC (переменный ток, AC Coupling)
- DC (постоянный ток, DC Coupling)

По умолчанию установлена связь по переменному току (АС).

Выбор режима связи:

- 1. Войдите в меню настройки входного сигнала.
- 2. Выберите режим АС или DC.

4.4 Режим свипирования (Sweep)

Нажмите кнопку **SWEEP** на передней панели, чтобы включить функцию свипирования. Генератор **FY2300** может выводить свип-сигнал через канал **CH1**.

В режиме свипирования генератор изменяет частоту выходного сигнала от начальной частоты (Start Frequency) до конечной частоты (Stop Frequency) в течение заданного времени свипирования (Sweep Time).

Функция свипирования поддерживает синусоидальные, прямоугольные, треугольные/пилообразные и произвольные сигналы.

Объект свипирования

Генератор FY2300 может выполнять свипирования параметров выходного сигнала через канал CH1.

Доступны следующие параметры для свипирования:

- Частота
- Амплитуда
- Смещение (DC Offset)
- Скважность (Duty Cycle)

Переключение между параметрами свипирования выполняется с помощью программной кнопки «Объект» (Obje).

Режимы свипирования:

• Частотное свипирование: генератор изменяет частоту сигнала от начального значения до конечного в течение заданного времени.

• Амплитудное свипирование: выходной сигнал изменяет амплитуду в указанном диапазоне.

• Свипирование смещения: смещение сигнала (DC Offset) изменяется в пределах заданного диапазона.

• Свипирование скважности: скважность сигнала изменяется от начального до конечного значения.

Установка начального значения свипирования

После активации функции **Sweep** необходимо задать начальное значение параметра в соответствии с выбранным объектом свипирования.

 Частотное свипирование: Нажмите программную кнопку «Начало» (Star), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы установить желаемое начальное значение. Пример: Начало: 10.000 000 000 кГц.

00'0<mark>1</mark>0. 000'000'000kHz

Амплитудное свипирование: Нажмите программную кнопку «Начало» (Star).
 Используйте кнопки навигации и регулировочный энкодер, чтобы задать начальную амплитуду. Пример: 10.00 В.

10. 0<mark>0</mark>V

Свипирование смещения: Нажмите программную кнопку «Начало» (Star).
 Используйте кнопки навигации и регулировочный энкодер, чтобы установить значение смещения. Пример: 0.00 В.

00. 0<mark>0</mark>V

Свипирование скважности: Нажмите программную кнопку «Начало» (Star).
 Используйте кнопки навигации и регулировочный энкодер, чтобы задать начальное значение скважности.

Установка конечного значения свипирования

После активации функции **Sweep** необходимо задать конечное значение параметра в соответствии с выбранным объектом свипирования.

• **Частотное свипирование:** Нажмите программную кнопку **«Конец» (**END), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы установить желаемое конечное значение. Пример: Конец: 20.000 000 000 кГц.

00'0<mark>2</mark>0.000'000'000kHz

• Амплитудное свипирование: Нажмите программную кнопку «Конец» (END). Используйте кнопки навигации и регулировочный энкодер, чтобы задать конечную амплитуду. Пример: 20.00 В.

20 0

• Свипирование смещения: Нажмите программную кнопку «Конец» (END). Используйте кнопки навигации и регулировочный энкодер, чтобы установить конечное значение смещения. Пример: 10.00 В.

Свипирование скважности: Нажмите программную кнопку «Конец» (END).
 Используйте кнопки навигации и регулировочный энкодер, чтобы задать конечное значение скважности. Пример: 80%.

Настройка времени свипирования

После активации функции **Sweep** необходимо задать **время спивирования**, в течение которого параметр изменится от начального до конечного значения.

• Нажмите программную кнопку **«Время» (Time)**, чтобы выделить параметр.

• Используйте кнопки навигации и регулировочный энкодер, чтобы установить желаемое значение.

- Диапазон настройки: от 10 мс до 999.99 с.
- Значение по умолчанию: 1 с.

Пример настройки:

• Время свипирования: 999.99 с.

Типы свипирования в FY2300

Генератор FY2300 поддерживает два типа свипирования:

- 1. Линейное (Linear Sweep)
- 2. Логарифмическое (Logarithmic Sweep)

По умолчанию используется **линейное сканирование**. Переключение между режимами выполняется с помощью **программной кнопки «Режим» (Mode)** в меню сканирования.

Генератор **FY2300** поддерживает два типа свипирования: **Линейное** (Linear) и **Логарифмическое** (Logarithm). По умолчанию установлен режим **Линейного свипирования**. Переключение типа свипирования осуществляется нажатием кнопки **MODE**.

1. Линейное свипирование (Linear Sweep)

В режиме линейного свипирования параметры сигнала изменяются линейно. Например, при свипировании частоты выходная частота прибора изменяется линейно по принципу "Изменение на несколько Герц в секунду".

Изменение контролируется следующими параметрами:

- Начальная частота (Start Frequency)
- Конечная частота (End Frequency)
- Время свипирования (Sweep Time)

Формула расчёта шага линейного свипирования:

Step value= (End value — Start value) / (Sweep time*100)

2. Логарифмическое свипирование (Logarithm Sweep)

В режиме **Логарифмического свипирования** параметры сигнала изменяются логарифмически. Например, при свипировании частоты выходная частота изменяется по принципу **«октава в секунду»** или **«декада в секунду»**.

Изменение контролируется следующими параметрами:

- Начальная частота (Start Frequency, Fstart)
- Конечная частота (End Frequency, Fend)
- Время свипирования (Sweep Time, Tsweep) Настройки логарифмического свипирования:

При включении режима Logarithm Sweep пользователи могут задать следующие параметры:

- Начальная частота (Fstart)
- Конечная частота (Fend)
- Время свипирования (Tsweep)
 Функция логарифмического свипирования:

F_{current}=P^T

Где:

- Fcurrent текущая частота
- Р и Т определяются следующими формулами:

 $P=10 \frac{lg(F_{stop}/F_{end})}{T_{sweep}}$

 $T=t+lg(F_{start})/lg(P)$

Где:

• t — время с начала свипирования, диапазон от 0 до Tsweep.

1. Нажмите кнопку <u>SWEEP</u> на передней панели, чтобы включить функцию свипирования.

- 2. Нажмите регулятор, чтобы запустить процесс свипирования.
- 3. Снова нажмите регулятор, чтобы остановить свипирование.

Начальное и конечное значения (Start value and End value)

Начальное и конечное значения задают верхние и нижние пределы свипирования для выбранного параметра. Генератор всегда выполняет свипирование от начального значения к конечному, затем возвращается к началу и продолжает процесс бесконечно.

Пример использования функции свипирования частоты:

• Start Frequency < End Frequency: Генератор свипирует от низкой частоты к высокой.

• Start Frequency > End Frequency: Генератор свипирует от высокой частоты к низкой.

• Start Frequency = Stop Frequency: Генератор выводит сигнал с фиксированной частотой.

Настройка начальной частоты:

1. При включенной функции свипирования нажмите кнопку **STAR**, чтобы выделить начальное значение.

2. Используйте кнопки стрелки и регулятор, чтобы установить нужное значение.

3. Разные режимы свипирования частоты соответствуют разным диапазонам начальной и конечной частоты:

Форма сигнала	Диапазон частот
Синус (Sine)	10 мГц - 25 МГц
Прямоугольный (Square)	10 мГц - 6 МГц
Пилообразный (Ramp)	10 мГц - 5 МГц
Произвольный (Arbitrary)	10 мГц - 6 МГц

• После изменения начальной или конечной частоты генератор автоматически перезапустит сканирование с новой начальной частоты.

4.5 Системные настройки и вспомогательные функции

Нажатие кнопки SYS на передней панели открывает **меню системных настроек**, где можно управлять конфигурацией прибора, параметрами синхронизации и настройками загрузки/сохранения данных.

*****	SAVE
MODEL :FY2320	PORTE
VERSION :V1.1	IT DAD
LANGUAGE: English	1. CORD
BUZZER :ON	SYNC
UPLINK :Slave OFF	Contraction
SYNC :NONE	CONF
More information:	
http://www.feeltech.net	

Основные функции меню SYS:

• Сохранение (SAVE:) – позволяет сохранить текущие параметры сигнала в одну из **20 ячеек памяти** устройства.

• Загрузка (Load) — загружает ранее сохранённые или предустановленные параметры в текущую рабочую конфигурацию.

• Синхронизация (Sync) — при включении этой функции СН2 автоматически копирует изменения СН1 без необходимости ручной настройки.

о Доступные для синхронизации параметры: **форма сигнала, частота, амплитуда,** смещение, скважность.

- Синхронизация может быть включена по отдельности для каждого параметра.
- Конфигурация (Confi) включает настройки:
- о Выбор **языка интерфейса**.
- Включение/отключение звуковых сигналов (бипера).
- Режим связи (Uplink Mode)

Сохранение и загрузка параметров (Save and Load)

1. Нажмите кнопку SAVE в системном интерфейсе, чтобы сохранить параметры текущей формы сигнала в указанную позицию памяти.

2. Нажмите кнопку **Load**, чтобы загрузить параметры ранее сохранённых форм сигналов в текущий системный режим.

Сохранение параметров:

• Выберите <u>S xx</u> справа, чтобы сохранить текущие параметры в соответствующую позицию памяти.

Загрузка параметров:

• Выберите L xx справа, чтобы загрузить параметры из выбранной позиции памяти в текущий системный режим.

Примечания:

• **FY2300** предоставляет **20** позиций для сохранения параметров.

• При включении генератор автоматически загружает параметры по умолчанию из Позиции 1.

Синхронизация (Synchronization)

1. Нажмите кнопку SYNC в системном интерфейсе, чтобы перейти к настройкам синхронизации.

2. Нажимайте соответствующие кнопки справа, чтобы выделить или отменить выбор параметров синхронизации канала **CH2**.

Принцип работы синхронизации:

Когда синхронизация соответствующих параметров активирована, параметры канала **CH2** будут автоматически изменяться в соответствии с изменениями канала **CH1**. Для синхронизации доступны следующие параметры, которые можно настраивать отдельно:

- Форма сигнала (Waveform)
- Частота (Frequency)

- Амплитуда (Amplitude)
- Смещение (Offset)
- Рабочий цикл (Duty Cycle)

Описание синхронизации параметров:

• WAVE выделен: форма сигнала CH2 будет изменяться в соответствии с изменениями формы сигнала CH1.

• **FREQ** выделен: частота **CH2** будет изменяться в соответствии с изменениями частоты **CH1**.

• AMPL выделен: амплитуда CH2 будет изменяться в соответствии с изменениями амплитуды CH1.

• OFFS выделен: смещение CH2 будет изменяться в соответствии с изменениями смещения CH1.

• **DUTY** выделен: рабочий цикл **CH2** будет изменяться в соответствии с изменениями рабочего цикла **CH1**.

Конфигурация (Configuration)

- 1. Нажмите кнопку SYS, чтобы войти в системный интерфейс.
- 2. Затем нажмите кнопку **CONF**, чтобы перейти к интерфейсу настройки системы.
- 3. Нажимайте соответствующие кнопки для выбора режима работы системы.

Настройки системы:

- Нажмите кнопку 中文, чтобы выбрать китайский язык системы.
- Нажмите кнопку Eng, чтобы выбрать английский язык системы.
- Нажмите кнопку BUZZ, чтобы включить или выключить звуковой сигнал (Buzzer).
- о Значение по умолчанию: Включено (On).

• Нажмите кнопку M/S, чтобы установить режим связи (Uplink Mode) — Master/Slave.

- о Значение по умолчанию: Master.
- Нажмите кнопку UPLI, чтобы включить или выключить функцию связи (Uplink

Function).

о Значение по умолчанию: Выключено (Off).

#****CONFIGURE**** 语言:英语 LANGUAGE: English BUZZER : ON UPLINK MODE: Slave UPLINK : OFF	中文 Eng BUZZ
	M/S UPLI

Каскадирование (Uplink)

Генератор **FY2300** поддерживает **каскадирование** (подключение нескольких устройств последовательно), что позволяет пользователям увеличить количество доступных каналов для вывода сигналов.

В каскадной сети (Uplink network) может быть только одна ведущая машина (Master Machine). Все остальные устройства должны быть настроены как подчинённые машины (Slave Machine).

Порядок настройки:

- 1. Настройка ведущей машины:
 - Выберите один из генераторов **FY2300** в качестве **Master Machine**.
 - Нажмите: <u>SYS</u> -> <u>CONF</u> -> <u>M/S</u>, чтобы установить **UPLINK MODE** в значение "**Master**".
 - Нажмите UPLI, чтобы включить UPLINK ("ON").

2. Настройка подчинённых машин:

- Установите все остальные устройства в режим Slave Machine.
- Нажмите: SYS -> CONF -> M/S, чтобы установить UPLINK MODE в значение "Slave".
- Нажмите UPLI, чтобы включить UPLINK ("ON").
- Повторите этот шаг для всех подчинённых машин.

3. Подключение устройств:

• Подключите все генераторы **FY2300** каскадно через разъём **TTL_IO**.

4. Ограничение количества устройств:

 Максимальное количество подключаемых устройств не должно превышать 8 изза ограничений по мощности привода.

Синхронная работа устройств:

После завершения настройки все устройства в сети будут работать синхронно в соответствии с начальной фазой **Master Machine**.

При выводе сигнала с одинаковой частотой можно выполнять вывод на несколько каналов с возможностью регулировки фазы.