Генераторы сигналов FeelTech Серия FY6300

Инструкция по эксплуатации

1 Обзор устройства	3
1.1 Описание передней панели	3
1.2 Описание правой панели	5
1.3 Описание левой панели	6
2 Включение и проверка	7
2.1 Подключение источника питания	7
2.2 Включение	7
2.3 Настройка системного языка	7
3 Пользовательский интерфейс	7
3.1 Режим отображения параметров двух каналов	8
4 Управление передней панелью	9
4.1 Вывод сигнала	9
4.1.1 Выбор выходного канала	9
4.1.2 Выбор формы волны	10
4.1.3 Настройка частоты	11
4.1.4 Настройка амплитуды	
4.1.5 Настройка уровня смещения	
4.1.6 Настройка скважности (для прямоугольного сигнала)	
4.1.7 Настройка фазы	
4.1.8 Включение выхода каналов	14
4.1.9 Пример: Вывод синусоидального сигнала	14
4.2 Функция пакетного импульсного сигнала (Burst)	16
4.3 Функция частотомера и счётчика импульсов	16
4.3.1 Включение частотомера	17
4.3.2 Настройка времени измерительного затвора (Gate Time)	
4.4 Функция сканирования (Sweep Mode)	
4.5 Функция модуляции (Modulation Mode)	23
4.6 Системные настройки и вспомогательные функции	25

Содержание

1 Обзор устройства

1.1 Описание передней панели

Передняя панель разделена на несколько удобных в управлении функциональных зон. Ниже описан блок управления на передней панели и интерфейс экрана.

Nº	Наименование	Описание		
N'		Карание последовательное переключение между формами волны: синусоидальная, прямоугольная, треугольная и другими типами. –Измените тип сигнала выбранного канала. –Переключение формы сигнала с помощью регулятора.		
1	Функциональные клавиши быстрого доступа, используемые для переключения функций генератора сигналов	 Переключение между частотомером и счетчиком для измерения частоты, периода, рабочего цикла и положительной ширины импульса внешнего входного сигнала. Ввод сигнала постоянного и переменного тока. Переключение времени затвора: 1 секунда, 10 секунд и 100 секунд. Работа в двухканальном режиме одновременно с измерением частоты. 		
		 Переключение между функциями сканирования, VCO и модуляции, возможна работа с волнами разных форм: синусоидальной, прямоугольной, пилообразной. Сканирование четырех параметров: частота, амплитуда, смещение и рабочий цикл. Поддержка двух методов сканирования: линейного и логарифмического. 		

		 Поддержка частоты, амплитуды, смещения и рабочего цикла, управляемых напряжением. Поддержка модуляций FSK, ASK, PSK, AM, FM, PM и триггерной модуляции.
	ROINC	 Настройка системных параметров и дополнительных функций. Сохранение до 20 наборов параметров, таких как частота, амплитуда, смещение и фаза. Настройка синхронизации параметров канала 1 и 2. Переключение между китайским и английским языками. Включение и отключение звукового сигнала. Поддержка каскада из нескольких устройств. Переключение между ведущим и ведомым устройствами в режиме каскада. Настройка состояния выхода по умолчанию для двух каналов при включении.
2	LCD-дисплей	2.4-дюймовый TFT цветной ЖК-дисплей с разрешением320×240, отображает текущее меню функций, настройки параметров, состояние системы и информационные сообщения. Подробную информацию см. в
		разделе «Интерфейс пользователя».
3	Функциональные кнопки	Они соответствуют меню, отображаемому слева на экране. Нажатие на соответствующую кнопку активирует соответствующее меню.
4	Колесико регулировки	 Во время настройки используйте колесико для увеличения (поворот по часовой стрелке) или уменьшения параметров (поворот против часовой стрелки). При настройке частоты нажмите на
		колесико, чтобы изменить единицу измерения. — В режиме сканирования, нажмите на колесико, чтобы запустить/остановить сканирование.
5	Клавиши направления	В режиме настройки используйте клавиши направления для перемещение курсора в область, которую необходимо настроить.

1.2 Описание правой панели

На рисунке изображена правая панель прибора. На правой панели устройства слева направо расположены 4 разъема BNC, а именно выходные разъемы CH2, CH1, разъем EXT.IN и выходной разъем синхронизации сигнала TTL_IO.

1. Выходной разъем СН2

Разъем BNC, номинальное выходное сопротивление которого составляет 50 Ом. Когда канал CH2 включен (загорается световой индикатор), разъем выводит сигнал с текущими настройками канала CH2.

2. Выходной разъем СН1

Разъем BNC, номинальное выходное сопротивление которого составляет 50 Ом. Когда канал CH1 включен (загорается световой индикатор), разъем выводит сигнал с текущими настройками канала CH1. 3. Разъем для ввода сигнала EXT.IN

Разъем BNC, входное сопротивление которого составляет 100 кВт. Он используется для приема измеренного сигнала и VCO, измеряемого частотомером/счетчиком, а также аналогового сигнала с модуляцией.

4. Разъем [TTL.IO]: Синхронизация вывода СН1 и TTL/ Ввод каскадного сигнала.

1) При отсутствии каскадирования выходное сопротивление будет меньше или равно 50 Ом, которое обычно используется для вывода сигнала синхронизации CH1., LVTTL прямоугольной формы и выходной амплитудой 3,3 В.

2) При активном каскадировании ведомого устройства, входной сигнал подается как сигнал внесистемной синхронизации, а входное сопротивление будет превышать 100кВт. Рекомендуется ознакомиться с инструкциями в разделе «Настройки синхронизации».

3) При проведении измерений данный разъем используется в качестве входного разъема цифрового сигнала (связь по постоянному току).

Внимание!

Во избежание повреждение прибора, напряжение входного сигнала для разъема EXT.IN не должно превышать диапазон ±20Vac+dc. Для разъема TTL_IO напряжение входного сигнала не должно превышать DC5V.

1.3 Описание левой панели

На рисунке изображена левая панель прибора. Слева направо расположены 3 разъема. Разъем для подключения источника питания (наружный диаметр 5,5 мм, внутренний диаметр 2,1 мм), USB-В разъем и кнопка питания.

1. Разъем для источника питания постоянного тока

Данный генератор сигналов совместим с источниками питания с напряжением 5V±0.5V, подача тока более 800mA, а мгновенный пусковой ток составляет 1А. Также возможно питание от мобильного источника питания постоянного тока 5V, образуя портативный источник сигнала.

Внимание!

Для обеспечения нормальной работы прибора, используйте только оригинальные источники питания.

2. USB-разъем

Используется для подключения к компьютеру и работы с ним. (Последовательный порт USB-TTL, необходимо установить драйвер последовательного порта).

— С помощью ПО главного компьютера или самостоятельной настройки.

3. Кнопка питания

Для включения прибора переведите переключатель в положение «ВКЛ», для отключения – в положение «ВЫКЛ».

2 Включение и проверка

2.1 Подключение источника питания

Для подключения к разъему питания постоянного тока 5V используйте адаптер питания, который идет в комплекте поставки. Данный генератор сигналов совместим с источниками питания с напряжением 5V±0.5V, подача тока более 800mA, потребляемая мощность всего прибора менее 5W.

2.2 Включение

После корректного подключения источника питания переведите кнопку питания в положение «ВКЛ». После включения прибор начнет выполнять процесс инициализации и самотестирования. После завершения самотестирования на экране отобразится основное меню. Если прибор не включается, изучите инструкцию в разделе «Устранение неполадок».

2.3 Настройка системного языка

Серия генераторов сигналов FY6300 поддерживает два системных языка: китайский и английский. Вы можете выбрать нужный язык в разделе: SYS—CONF / 配置

3 Пользовательский интерфейс

Пользовательский интерфейс FY6300 включает четыре режима отображения: режим отображения параметров двух каналов, расширенный режим отображения одного канала, режим отображения дополнительных функций и режим отображения системных настроек.

3.1 Режим отображения параметров двух каналов

В верхней половине экрана будет отображаться выбранный в данный момент канал, параметры которого можно изменить. Выбирайте канал с помощью кнопок CH1 и CH2.

Nº	Описание				
1	Строка состояния текущего выбранного канала				
	Отображение текущего канала, параметры которого можно				
	настроить.				
2	Форма волны сигнала выбранного в данный момент канала				
	Отображение названия текущей функции. Например: "СН1= сигнал с				
	АМ-колебанием" означает, что выбранный в данный момент канал				
	СН1 выдает сигнал с амплитудной модуляцией. Форму волны можно				
	изменить с помощью кнопки WAVE на передней панели. Кроме того,				
	когда активирована функция изменения формы волны, можно				
. 0.	использовать колесико регулировки для быстрого переключения				
	между формами волны сигнала или нажать на колесико для быстрого				
	выбора формы волны.				
3	Состояние выхода текущего канала				
	Отображает, включен или выключен выход текущего канала.				
	Состояние выхода можно изменить, с помошью кнопок СН1 и СН2				
	на передней панели.				
4	Изображение формы волны				
	Отображение формы сигнала, текушего канала, желтый цвет - канал				
	СН1. а синий - канал СН2. (Прибор может отображать любую форму				
	сигнала. настроенную пользователем).				
5	Строка меню				
	Отображение текущих доступных параметров.				
6	Частота				

	Отображение значения частоты текущего канала. Нажмите кнопку
	频率, для выбора параметра «частота» на дисплее. Изменить этот
	параметр можно с помощью кнопок направления и колесика
	регулировки.
7	Амплитуда
	Отображение значения амплитуды текущего канала. Нажмите кнопку
	幅度, для выбора параметра «амплитуда» на дисплее. Изменить этот
	параметр можно с помощью кнопок направления и колесика
	регулировки.
8	Смещение
	Отображение значения смещения текущего канала. Нажмите кнопку
	偏置 для выбора дараметра «смещение» на лисплее. Изменить этот
	, для высора нараметра «смещение» на дисниес. Изменить этот
	параметр можно с помощью кнопок паправления и колесика
9	Рабочий шикл
5	Отображение рабочего цикла текущего канала. Нажмите кнопку
	上內
	비프, для выбора параметра «рабочий цикл» на дисплее. Изменить
	этот параметр можно с помощью кнопок направления и колесика
	регулировки.
10	<u>Фаза</u>
	Отображение значения фазы текущего канала. Нажмите кнопку 相位,
	для выбора параметра «фаза» на дисплее. Изменить этот параметр
	можно с помощью кнопок направления и колесика регулировки.
11	Параметры невыбранного канала
	Отображение частоты, амплитуды, смещения, фазы, рабочего цикла и
	статуса невыбранного канала. Параметры в этом столбце не могут
	быть изменены в текущем интерфейсе. При необходимости
	изменения параметров, выберите канал, после чего внесите
	изменения.

4 Управление передней панелью

4.1 Вывод сигнала

Серия **FY6300** — это функциональные генераторы произвольных сигналов, которые могут выводить сигналы как с одного, так и одновременно с двух каналов (включая синусоидальные, прямоугольные, пилообразные, импульсные сигналы, шум и другие формы сигналов). При включении по умолчанию оба канала настроены на синусоидальный сигнал с частотой **10 кГц** и амплитудой **5 Врр**. Пользователь может настраивать параметры выходного сигнала в соответствии с требованиями.

4.1.1 Выбор выходного канала

Кнопки CH1 и CH2 на передней панели используются для переключения активного канала. По умолчанию при включении прибора выбран канал CH1. В пользовательском интерфейсе параметры CH1 отображаются в верхней части экрана, а рамка индикатора состояния канала выделена желтым цветом.

Для переключения на **CH2** необходимо нажать кнопку **CH2** на передней панели. После этого параметры **CH2** отобразятся в верхней части экрана, а рамка индикатора состояния канала изменится на **синий цвет**. После выбора необходимого канала пользователь может задать форму сигнала и его параметры.

Примечания:

- Каналы СН1 и СН2 нельзя выбрать одновременно.
- Настройка параметров осуществляется поочередно: сначала для СН1, затем

для **СН2**.

• Если требуется синхронное изменение параметров двух каналов, воспользуйтесь функцией синхронизации.

4.1.2 Выбор формы волны

FY6300 может выдавать следующие функции/формы сигналов:

- Синусоида
- Прямоугольная волна (регулируемый рабочий цикл)
- Треугольная волна
- Восходящая пилообразная волна
- Нисходящая пилообразная волна
- Пульсовая волна
- Многочастотная волна
- Нерегулярная звуковая волна
- Лестничная треугольная волна
- Восходящая нарастающая волна
- Нисходящая нарастающая волна
- Восходящая экспоненциальная волна
- Нисходящая экспоненциальная волна
- Положительный индекс снижения
- Отрицательный индекс снижения
- Восходящая логарифмическая волна
- Нисходящая логарифмическая волна
- Восходящий логарифм
- Нисходящий логарифм
- Линейная частотная модуляция
- Волна электрокардиограммы
- Волна трапецеидального импульса
- Импульсная волна
- Узкая импульсная волна
- Звуковая волна гауссовского белого шума

- Амплитудно-модулированная волна
- Частотно-модулированная волна
- Положительная полуволна
- Отрицательная полуволна
- Положительное однополупериодное выпрямление
- Отрицательное однополупериодное выпрямление
- Пользовательская форма сигнала

Нажатие на кнопку **WAVE** на передней панели позволяет переключить форму волны для выбранного канала. В активированном состоянии переключения формы волны также можно использовать колесико регулировки для быстрого переключения между различными формами. Выбранная форма волны будет отображаться в области отображения волны. По умолчанию при включении устройства выбирается синусоида (также можно настроить состояние по умолчанию при включении согласно пользовательским настройкам)

Форма волны		Синусоида	Прямоу-	Треуголь-	Импульс	Произволь
			гольная	ная		ная
Название функции		Sine	Squr	Trgl	Ramp	Arb
	Частота	\checkmark	\checkmark \checkmark	\checkmark	\checkmark	\checkmark
Параметры	Амплитуда	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Смещение	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Фаза	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Рабочий		\checkmark			
~	цикл					

Примечание: Пользовательские формы волны могут быть отредактированы и загружены с помощью программного обеспечения для управления FY6300, предоставленного FeelTech. Данное программное обеспечение и драйверы можно скачать на официальном сайте: www.feeltech.net

4.1.3 Настройка частоты

Частота является одним из важнейших параметров базовой формы волны. Диапазон настройки частоты варьируется в зависимости от типа сигнала и формы волны. Заводская настройка по умолчанию установлена на 10 кГц.

Нажмите кнопку ^[数率], чтобы выбрать параметр «Частота». Затем используйте клавиши направления и колесико регулировки для настройки: с помощью клавиш направления переместите курсор в область, которую необходимо отредактировать, с помощью колесика регулировки настройте числовое значение.

При необходимости можно изменить единицы измерения частоты. Нажмите на колесико регулировки (кнопка ОК), чтобы изменить единицу измерения частоты. Доступны следующие единицы: МГц, кГц, Гц, мГц и мкГц.

4.1.4 Настройка амплитуды

Диапазон настройки амплитуды зависит от установленной частоты и затухания. Изучите инструкцию «Выходные характеристики» в разделе «Функциональные параметры». По умолчанию установлено значение — 5 В (пик-пик).

Нажмите кнопку 幅度, чтобы выделить параметр "Амплитуда". После этого используйте клавиши направления и колесико регулировки для настройки значения амплитуды: с помощью клавиш направления переместите курсор в область, которую необходимо отредактировать, с помощью колесика регулировки настройте числовое значение.

Краткое пояснение:

1 В чем разница между амплитудой в Vpp и соответствующим значением в единицах Vrms?

Ответ:

Vpp — это единица измерения амплитуды сигнала от пика до пика, a Vrms — это единица эффективного значения сигнала. Единица по умолчанию — Vpp.

Пояснение:

Для различных форм сигналов соотношение между Vpp и Vrms различается. Соотношение этих двух единиц показано на рисунке ниже (в качестве примера взята синусоида).

Согласно приведенному выше рисунку, соотношение преобразования между Vpp и Vrms выполняется по следующему уравнению:

$$Vpp = 2\sqrt{2} Vrms$$

Для примера, если текущая амплитуда составляет 5 Vpp, то для синусоидальной формы волны преобразованное значение будет 1.768 Vrms.

4.1.5 Настройка уровня смещения

Диапазон настраиваемого постоянного напряжения смещения (DC bias) ограничен параметром «ослабление». По умолчанию значение DC смещения установлено в 0 В.

На экране отображается текущее значение DC смещения, которое может быть либо значением по умолчанию, либо ранее установленным пользователем. При изменении параметра «ослабление» прибор автоматически корректирует уровень смещения в соответствии с новым значением ослабления.

Изменение параметра смещения:

1. Нажмите программную кнопку «Смещение» (Bias), чтобы выделить данный параметр.

2. Используйте **кнопки навигации** для перемещения курсора и выбора разряда, который нужно изменить.

3. Поверните **регулировочный энкодер**, чтобы установить требуемое значение смещения.

4.1.6 Настройка скважности (для прямоугольного сигнала)

Скважность (duty cycle) определяется как процентное соотношение времени нахождения сигнала в высоком состоянии к полному периоду прямоугольного сигнала. Данный параметр применяется только при выборе прямоугольного сигнала (Square Wave).

Диапазон настраиваемых значений скважности зависит от установленной частоты. Допустимые пределы см. в спецификации прибора. Значение по умолчанию — 50%.

Изменение параметра скважности:

1. Нажмите программную кнопку «Скважность» (Duty Cycle), чтобы выделить данный параметр.

2. Используйте **кнопки навигации**, чтобы переместить курсор и выбрать разряд, который нужно изменить.

3. Поверните **регулировочный энкодер**, чтобы установить требуемое значение скважности.

Дополнительно:

• Прибор позволяет регулировать скважность в диапазоне 0.1% – 99.9%.

• Если в режиме настройки скважности нажать регулировочный энкодер (кнопку ОК), значение скважности сбросится до 50%

4.1.7 Настройка фазы

Диапазон настраиваемых значений начальной фазы составляет от 0° до 359.9° с разрешением 0.1°. Значение по умолчанию — 0°.

На экране отображается текущее значение начальной фазы, которое может быть значением по умолчанию или ранее установленным пользователем.

Изменение параметра фазы:

1. Нажмите программную кнопку «Фаза» (Phase) и ▼, чтобы выделить данный параметр.

2. Используйте **кнопки навигации**, чтобы переместить курсор и выбрать разряд, который нужно изменить.

3. Поверните **регулировочный энкодер**, чтобы установить требуемое значение фазы.

4.1.8 Включение выхода каналов

После настройки параметров выбранной формы сигнала необходимо включить канал для вывода. Когда выход отключен, световой индикатор под соответствующей кнопкой канала не горит; при включении выхода индикатор загорается.

По умолчанию при включении устройства оба выхода СН1 и СН2 активированы, при этом светятся индикаторы над кнопками СН1 и СН2. Также можно настроить прибор таким образом, чтобы при включении вывод обоих каналов был отключен по умолчанию. Способ настройки: нажмите кнопку 【SYS】, после чего нажмите кнопку «Далее» 【更多】для настройки каждого из каналов.

• Для канала СН1 доступны два способа:

1. Если вы находитесь в режиме настройки параметров волны и выбран канал СН1,

с помощью кнопки СН1, включите/выключите выход для данного канала.

2. Находясь в любом другом режиме или в случае, когда канал CH1 не выбран, нажмите кнопку CH1, чтобы выбрать данный канал, после чего с помощью кнопки CH1, включите/выключите выход для данного канала.

• Для канала СН2 доступны два способа:

1. Если вы находитесь в режиме настройки параметров волны и выбран канал СН2,

с помощью кнопки СН2, включите/выключите выход для данного канала.

2. Находясь в любом другом режиме или в случае, когда канал CH2 не выбран, нажмите кнопку **CH2**, чтобы выбрать данный канал, после чего с помощью кнопки **CH2**, включите/выключите выход для данного канала.

4.1.9 Пример: Вывод синусоидального сигнала

В данном разделе описывается процесс вывода синусоидального сигнала через разъём СН1 с частотой 20 кГц, амплитудой 2.5 Врр, смещением 1.6 ВDC и начальной фазой 90.9°.

Порядок настройки:

1. Выбор выходного канала: Нажмите кнопку СН1 для выбора канала. В верхней части экрана рамка индикатора состояния СН1 будет выде<u>лена жёлтым</u> цветом.

2. Выбор формы сигнала: Нажмите кнопку **WAVE**, затем выберите синусоидальный сигнал. В центральной части экрана появится изображение синусоидальной волны.

3. Настройка частоты: Нажмите программную кнопку «Частота» (Frequency), чтобы выделить параметр. При необходимости используйте ▲ для переключения на нужный параметр. Используйте кнопки навигации, чтобы переместить курсор на нужный разряд, затем

поверните регулировочный энкодер, чтобы установить значение. Установите частоту: 20.000 кГц.

00'0<mark>2</mark>0. 000'000'000kHz

4. Настройка амплитуды: Нажмите программную кнопку «Амплитуда» (Amplitude), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы задать значение 2.5 Врр.

5. Настройка смещения: Нажмите программную кнопку «Смещение» (Bias), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы задать значение 1.6 BDC.

01. <mark>6</mark>0V

6. Настройка фазы: Нажмите ▼, чтобы перейти к дополнительным параметрам. Нажмите программную кнопку «Фаза» (Phase), чтобы выделить параметр. Используйте кнопки навигации и регулировочный энкодер, чтобы установить значение 90.9°.

7. Включение выхода сигнала: Нажмите кнопку СН1, чтобы включить выход сигнала. Светодиод СН1 загорится, указывая на активный выход. Разъём СН1 начнёт выводить синусоидальный сигнал с заданными параметрами.

8. Наблюдение за выходным сигналом: Подключите разъём CH1 генератора FY6300 к осциллографу с помощью BNC-кабеля. На экране осциллографа отобразится сгенерированный синусоидальный сигнал.

FeelTech Серия FY6300

4.2 Функция пакетного импульсного сигнала (Burst)

Генератор **FY6300** поддерживает вывод **пакетных импульсов (Burst)** через канал **CH1**, что позволяет воспроизводить сигналы с заданным количеством циклов.

Генератор может использовать в качестве триггера следующие источники:

- Внутренний сигнал от СН2
- Ручной триггер
- Внешний триггер

Функция Burst поддерживает формирование синусоидальных, прямоугольных, пилообразных, импульсных, шумовых и произвольных сигналов, за исключением постоянного напряжения (DC).

Включение режима Burst:

1. Активировать режим Burst: Нажмите кнопку **SWEEP**, затем нажмите программную кнопку «Триггер» (Trigger), чтобы войти в режим генерации пакетного сигнала.

2. Выбор режима триггера: Используйте программные кнопки для выбора одного из трёх доступных режимов:

• CH2 триггер: При появлении импульса на CH2, CH1 выдаёт пакетный сигнал.

• Внешний триггер: При подаче импульса на разъём EXT.IN, CH1 выдаёт пакетный сигнал.

• **Ручной триггер**: Выходной сигнал **СН1** запускается нажатием кнопки **ОК** (регулировочного энкодера).

3. Настройка количества импульсов: Нажмите программную кнопку «Количество» (Count) для выделения параметра. Используйте кнопки навигации и регулировочный энкодер, чтобы задать количество импульсов в одном пакете. Значение по умолчанию: 1. Диапазон настройки: от 1 до 1 048 575.

4. Вывод пакетного сигнала: После настройки параметров сигнал CH1 начнёт выдавать импульсный **пакет** в соответствии с текущими настройками триггера.

Режимы работы:

• **Нормальный режим** (Burst выключен) – генератор работает в обычном режиме непрерывного сигнала.

• **Триггер от CH2** – при каждом импульсе на CH2, канал CH1 выдаёт пакетный сигнал.

• Внешний триггер – при подаче импульса на EXT.IN, канал CH1 выдаёт пакетный сигнал.

• Ручной триггер – выходной сигнал запускается вручную нажатием кнопки ОК (регулировочного энкодера).

4.3 Функция частотомера и счётчика импульсов

Генератор **FY6300** оснащён функцией **частотомера и счётчика импульсов**, позволяя измерять:

- Частоту внешнего сигнала
- Период сигнала

- Скважность (duty cycle)
- Длительность положительного импульса
- Длительность отрицательного импульса

При этом частотомер может работать одновременно с режимом двухканального вывода сигналов.

4.3.1 Включение частотомера

- 1. Нажмите кнопку «MEAS» на передней панели для включения частотомера.
- 2. Откроется интерфейс настроек частотомера.
- 3. Входной измеряемый сигнал подаётся через разъём EXT.IN.
- 4. Результаты измерений отображаются в реальном времени.

5. Минимальная измеряемая частота: 0.01 Гц (при времени измерительного затвора 100 с).

Переключение между функциями частотомера и счётчика импульсов:

- Нажмите программную кнопку «Счётчик» (Count) для включения режима счёта импульсов.
 - При этом кнопка «Счётчик» изменится на «Частота» (Frequency).

• Повторное нажатие позволит переключаться между режимами измерения частоты и счёта импульсов.

Дополнительные функции:

- «Пауза» останавливает обновление измерений на экране.
- «Сброс» обнуляет значение счётчика.

Важные примечания:

- Входной сигнал на EXT.IN должен иметь амплитуду не менее 1.5 В.
- Максимально допустимое входное напряжение для EXT.IN: 20 В.
- Максимально допустимое напряжение для TTL_IO: 5 В DC.

• При использовании функции частотомера и счётчика необходимо отключить каскадное соединение прибора.

4.3.2 Настройка времени измерительного затвора (Gate Time)

- Нажмите программную кнопку «Затвор» (Gate) для выбора времени измерения.
- По умолчанию установлено 1 с.
- Для измерения низкочастотных сигналов можно выбрать большее время измерения.

Время затвора	Разрешение измерения частоты
1 c	1 Гц
10 c	0.1 Гц
100 c	0.01 Гц

Настройка режима входного сигнала (связь по переменному/постоянному току)

Генератор FY6300 поддерживает настройку режима входного сигнала:

- AC (переменный ток, AC Coupling)
- DC (постоянный ток, DC Coupling)

По умолчанию установлена связь по переменному току (AC). Выбор режима связи:

- 1. Войдите в меню настройки входного сигнала.
- 2. Выберите режим АС или DC.

Рекомендации по подключению:

- При выборе АС-связи (переменного тока) сигнал следует подавать на разъём EXT.IN.
- При выборе DC-связи (постоянного тока) сигнал необходимо подавать на разъём TTL_IO.

4.4 Функция сканирования (Sweep Mode)

Повторное нажатие кнопки SWEEP на передней панели включает функцию сканирования. Генератор FY6300 может выводить сканируемый сигнал через канал CH1. В процессе сканирования определённый параметр изменяется от начального значения до конечного в течение заданного времени.

Функция сканирования поддерживает синусоидальные, прямоугольные, пилообразные и произвольные сигналы.

Объект сканирования

Генератор FY6300 может выполнять сканирование параметров выходного сигнала через канал CH1.

Доступны следующие параметры для сканирования:

- Частота
- Амплитуда
- Смещение (DC Offset)
- Скважность (Duty Cycle)

Переключение между параметрами сканирования выполняется с помощью программной кнопки «Объект» (Object).

Режимы сканирования:

• Частотное сканирование: генератор изменяет частоту сигнала от начального значения до конечного в течение заданного времени.

• Амплитудное сканирование: выходной сигнал изменяет амплитуду в указанном диапазоне.

• Сканирование смещения: смещение сигнала (DC Offset) изменяется в пределах заданного диапазона.

• Сканирование скважности: скважность сигнала изменяется от начального до конечного значения.

Установка начального значения сканирования

После активации функции **Sweep** необходимо задать начальное значение параметра в соответствии с выбранным объектом сканирования.

• **Частотное сканирование:** Нажмите программную кнопку **«Начало» (Start)**, чтобы выделить параметр. Используйте **кнопки навигации** и **регулировочный энкодер**, чтобы установить желаемое начальное значение. Пример: **Начало: 10.000 000 000 кГц**.

00'0<mark>1</mark>0. 000'000'000kHz

• Амплитудное сканирование: Нажмите программную кнопку «Начало» (Start). Используйте кнопки навигации и регулировочный энкодер, чтобы задать начальную амплитуду. Пример: 10.00 В.

10. 0<mark>0</mark>V

• Сканирование смещения: Нажмите программную кнопку «Начало» (Start). Используйте кнопки навигации и регулировочный энкодер, чтобы установить значение смещения. Пример: 0.00 В.

• Сканирование скважности: Нажмите программную кнопку «Начало» (Start). Используйте кнопки навигации и регулировочный энкодер, чтобы задать начальное значение скважности.

Установка конечного значения сканирования

После активации функции **Sweep** необходимо задать конечное значение параметра в соответствии с выбранным объектом сканирования.

• **Частотное сканирование:** Нажмите программную кнопку **«Конец» (Stop)**, чтобы выделить параметр. Используйте **кнопки навигации** и **регулировочный энкодер**, чтобы установить желаемое конечное значение. Пример: Конец: 20.000 000 000 кГц.

00'0<mark>2</mark>0.000'000'000kHz

Амплитудное сканирование: Нажмите программную кнопку «Конец» (Stop).
 Используйте кнопки навигации и регулировочный энкодер, чтобы задать конечную амплитуду. Пример: 20.00 В.

20. 0<mark>0</mark>V

• Сканирование смещения: Нажмите программную кнопку «Конец» (Stop). Используйте кнопки навигации и регулировочный энкодер, чтобы установить конечное значение смещения. Пример: 10.00 В.

10. 0<mark>0</mark>V

Сканирование скважности: Нажмите программную кнопку «Конец» (Stop).
 Используйте кнопки навигации и регулировочный энкодер, чтобы задать конечное значение скважности. Пример: 80%.

Настройка времени сканирования

После активации функции **Sweep** необходимо задать **время сканирования**, в течение которого параметр изменится от начального до конечного значения.

• Нажмите программную кнопку **«Время» (Time)**, чтобы выделить параметр.

• Используйте кнопки навигации и регулировочный энкодер, чтобы установить желаемое значение.

- Диапазон настройки: от 10 мс до 999.99 с.
- Значение по умолчанию: 1 с.

Пример настройки:

• Время сканирования: 999.99 с.

Функция VCO (Voltage Control Output) – Внешнее управление сканированием Общее описание

Функция VCO позволяет управлять выходным сигналом генератора FY6300 с помощью внешнего управляющего напряжения. Данный режим поддерживает:

- VCF (Voltage-Controlled Frequency) управление частотой.
- VCA (Voltage-Controlled Amplitude) управление амплитудой.

VCB (Voltage-Controlled Bias) – управление смещением.

• VCD (Voltage-Controlled Duty Cycle) – управление скважностью.

Настройка режима VCO

1. Нажмите кнопку **SWEEP**, чтобы войти в меню настройки сканирования.

2. Нажмите **F4 «Источник» (Source)** и выберите **VCO IN** в качестве источника сигнала.

3. Настройте объект сканирования, начальное и конечное значения, режим сканирования.

4. Подключите внешний управляющий сигнал к разъёму **VCO IN** на задней панели прибора.

- 5. Нажмите кнопку ОК (регулировочный энкодер) для запуска режима VCO.
- 6. Повторное нажатие **ОК** остановит процесс сканирования.

Важные примечания

• Входной управляющий сигнал **должен подаваться на разъём VCO IN** на задней панели генератора.

- Частота входного управляющего сигнала не должна превышать 500 Гц.
 - Амплитуда входного управляющего сигнала должна быть в диапазоне от 0 до 5

Β.

Типы сканирования в FY6300

Генератор **FY6300** поддерживает два типа сканирования:

- 1. Линейное (Linear Sweep)
- 2. Логарифмическое (Logarithmic Sweep)

По умолчанию используется **линейное сканирование**. Переключение между режимами выполняется с помощью **программной кнопки «Режим» (Mode)** в меню сканирования.

1. Линейное сканирование (Linear Sweep)

В этом режиме изменение параметра происходит с постоянной скоростью.

Например, при частотном сканировании частота изменяется на фиксированное число Гц в секунду. Скорость изменения определяется параметрами:

- Начальная частота (F_start)
- Конечная частота (F_end)
- Время сканирования (T_sweep)

Формула расчёта шага изменения параметра:

$$\Delta F = rac{F_{ ext{end}} - F_{ ext{start}}}{T_{ ext{sweep}} imes 100}$$

где ΔF— шаг изменения частоты за один цикл обновления. Этот режим удобен для **равномерного изменения параметров** сигнала во времени.

2. Логарифмическое сканирование (Logarithmic Sweep)

В этом режиме изменение параметра происходит по логарифмическому закону.

При частотном сканировании частота изменяется по октавам (удвоение за единицу времени) или по декадам (изменение в 10 раз за единицу времени).

Формула логарифмического сканирования:

 $F_{\text{current}} = P^T$

где:

- F_{current} текущая частота,
- P=10^{log(Fend/Tsweep)}
- $T=t+log(F_{start})/log(10)$
- t текущее время (в пределах от 0 до T_{sweep}).

Этот режим удобен для исследования амплитудно-частотных характеристик (АЧХ) и других спектральных анализов, где важно изменять частоту по экспоненциальному закону.

Включение режима сканирования

1. Активация функции сканирования

Нажмите кнопку SWEEP на передней панели, чтобы включить режим сканирования. Нажмите регулировочный энкодер (ОК-кнопку), чтобы запустить процесс сканирования. Повторное нажатие ОК-кнопки остановит сканирование.

Настройка начального и конечного значений

Начальное (Start) и конечное (Stop) значения определяют диапазон изменения параметра.

Генератор циклически изменяет параметр от начального значения к конечному, затем обратно к начальному.

Пример частотного сканирования:

Если начальная частота < конечной, генератор сканирует от низких частот к высоким.

Если начальная частота > конечной, генератор сканирует от высоких частот к низким.

Если начальная частота = конечной, генератор выдаёт сигнал с фиксированной частотой.

Настройка частотного сканирования для разных типов сигналов

Тип сигнала	Диапазон частот сканирования
Синусоидальный сигнал	100 мГц – макс. частота модели
Прямоугольный сигнал	100 мГц – 25 МГц
Пилообразный сигнал	100 мГц – 10 МГц
Произвольный сигнал	100 мГц – 10 ΜΓц

После изменения начальной или конечной частоты генератор автоматически перезапустит сканирование с новой начальной частоты.

Для задания частоты нажмите программную кнопку «Начало» (Start), используйте кнопки навигации и регулировочный энкодер для ввода значения.

4.5 Функция модуляции (Modulation Mode)

Генератор **FY6300** поддерживает режим **модуляции**, позволяющий изменять параметры **несущего сигнала (CH1)** с помощью **модулирующего сигнала**.

1. Активация режима модуляции

Нажмите кнопку SWEEP на передней панели, чтобы войти в меню модуляции. Генератор немедленно начнёт выполнение текущей модуляции. Выходной сигнал модулируется с использованием CH1 в качестве несущего. В качестве модулирующего сигнала могут использоваться:

- о Сигнал с СН2
- Внешний входной сигнал
- Ручной импульсный сигнал

- 2. Поддерживаемые типы модуляции
- 1. Цифровая модуляция (Digital Modulation):
- FSK (Frequency Shift Keying) манипуляция по частоте
- ASK (Amplitude Shift Keying) манипуляция по амплитуде
- PSK (Phase Shift Keying) манипуляция по фазе
- 2. Генерация импульсных пакетов (Burst Mode Trigger)
- Позволяет запускать импульсные серии по внешнему или внутреннему триггеру.
- 3. Аналоговая модуляция (Analog Modulation):
- AM (Amplitude Modulation) амплитудная модуляция
- FM (Frequency Modulation) частотная модуляция
- PM (Phase Modulation) фазовая модуляция

3. Настройка параметров модуляции

После входа в меню модуляции настройте несущий и модулирующий сигналы. Выберите тип модуляции в зависимости от задачи. Настройте параметры с помощью кнопок навигации и регулирующего энкодера.

Примечание: При входе в меню модуляции генератор немедленно начинает выполнение текущей конфигурации модуляции.

Режимы модуляции

В режиме **модуляции** можно выбрать один из нескольких **режимов модуляции**, переключаясь между ними с помощью **кнопки «Режим» (Mode, F1)**.

Каждое нажатие **F1 «Режим»** переключает генератор на следующий тип модуляции.

Доступные режимы модуляции:

1. FSK (Frequency Shift Keying) – Манипуляция по частоте

о Переключение между **двумя частотами** в зависимости от модулирующего сигнала.

- 2. ASK (Amplitude Shift Keying) Манипуляция по амплитуде
- Изменение амплитуды несущего сигнала в зависимости от модулирующего сигнала.
 - 3. PSK (Phase Shift Keying) Манипуляция по фазе
 - Фаза несущего сигнала изменяется скачкообразно по сигналу модуляции.
 - 4. Триггерный режим (Trigger Mode)
 - о Управляемый вывод импульсных пакетов (Burst Output).
 - 5. AM (Amplitude Modulation) Амплитудная модуляция
 - Модуляция амплитуды несущего сигнала с помощью модулирующего сигнала.
 - 6. FM (Frequency Modulation) Частотная модуляция
 - Модуляция частоты несущего сигнала.
 - 7. PM (Phase Modulation) Фазовая модуляция
 - Модуляция фазы несущего сигнала.

Примечание: При каждом нажатии кнопки F1 «Режим» (Mode) генератор переключает режим модуляции на следующий в списке.

Источник модуляции (Modulation Source)

В режиме **модуляции** можно выбрать **источник модулирующего сигнала**, нажав кнопку **F2 «Источник» (Source)**.

Каждое нажатие кнопки «Источник» (Source) переключает модулирующий сигнал на следующий вариант.

Доступные источники модуляции

Для режимов FSK, ASK, PSK и Trigger Mode:

1. СН2 – использование сигнала канала 2 в качестве модулирующего.

2. Внешний (AC, через EXT.IN) – внешнее подключение переменного сигнала через разъём EXT.IN.

3. Ручной (Manual) – использование кнопки «ОК» для ручной модуляции.

4. Внешний (DC, через TTL_IO) – внешнее подключение постоянного сигнала через разъём TTL_IO.

Для режимов AM, FM, PM:

- 1. СН2 использование сигнала канала 2 как модулирующего.
- 2. Внешний (EXT.IN) внешнее подключение постоянного сигнала через EXT.IN.

Примечание: При каждом нажатии кнопки F2 «Источник» (Source) источник модуляции переключается на следующий доступный вариант.

Параметры модуляции (Modulation Parameters)

В режиме **модуляции** можно настроить параметры, нажав кнопку **F3 «Параметры»** (Parameters).

Примеры доступных параметров:

- 1. В режиме FSK настройка частоты переключения.
- 2. В режиме Trigger настройка количества импульсов в серии.
- 3. В режиме АМ настройка глубины модуляции (0–200%).
- 4. В режиме FM настройка девиации частоты.
- 5. В режиме РМ настройка девиации фазы.

Дополнительные функции кнопок

• **F4 «Частота» (Frequency)** – в режиме модуляции позволяет изменять частоту

CH1.

• **F5 «Амплитуда» (Amplitude)** – в режиме модуляции позволяет изменять амплитуду CH1.

4.6 Системные настройки и вспомогательные функции

Нажатие кнопки **SYS** на передней панели открывает **меню системных настроек**, где можно управлять конфигурацией прибора, параметрами синхронизации и настройками загрузки/сохранения данных.

Основные функции меню SYS:

• Сохранение (Store) – позволяет сохранить текущие параметры сигнала в одну из 20 ячеек памяти устройства.

• Загрузка (Load) — загружает ранее сохранённые или предустановленные параметры в текущую рабочую конфигурацию.

• Синхронизация (Sync) – при включении этой функции СН2 автоматически копирует изменения СН1 без необходимости ручной настройки.

о Доступные для синхронизации параметры: **форма сигнала, частота, амплитуда,** смещение, скважность.

Синхронизация может быть включена по отдельности для каждого параметра.

• Конфигурация (Config) – включает настройки:

о Выбор **языка интерфейса**.

• Включение/отключение звуковых сигналов (бипера).

• Управление режимами **многоаппаратного каскадирования (multi-unit** cascading).

• Дополнительно (More) – позволяет настроить состояние выходных каналов (CH1 и CH2) при включении прибора.

Сохранение и загрузка параметров

В системном меню можно сохранять и загружать параметры сигнала для последующего использования.

Сохранение текущих параметров:

- 1. В системном меню нажмите «Сохранить» (Store).
- 2. Выберите нужную ячейку памяти с помощью кнопок «Сохранить XX» (Store XX).
- 3. Текущие параметры сигнала будут сохранены в выбранное хранилище.

Загрузка сохранённых параметров:

- 1. В системном меню нажмите «Загрузить» (Load).
- 2. Выберите необходимую ячейку памяти с помощью кнопок «Загрузить XX» (Load

XX).

3. Сохранённые параметры будут загружены в текущую конфигурацию устройства.

Дополнительная информация:

• **FY6300 поддерживает 20 ячеек памяти** для сохранения пользовательских параметров.

• При включении устройства автоматически загружаются параметры из ячейки памяти №1.

Функция синхронизации (Sync Mode)

В меню системных настроек можно настроить синхронизацию параметров между каналами CH1 и CH2.

Активация синхронизации:

- 1. Войдите в системное меню.
- 2. Нажмите кнопку «Синхронизация» (Sync) для входа в настройки.

3. Используйте **правые программные кнопки**, чтобы **включить (подсветка) или отключить** синхронизацию для конкретного параметра.

Доступные параметры синхронизации:

• Форма сигнала (Waveform)

о При включённой синхронизации **СН2 автоматически повторяет форму сигнала**

- CH1.
- Частота (Frequency)
- Если включена, **частота СН2 будет изменяться вместе с СН1**.
- Амплитуда (Amplitude)
- Включение синхронизации заставляет CH2 копировать амплитуду CH1.
- Смещение (Bias Offset)
- о Когда эта настройка активирована, смещение (DC Offset) на CH2 повторяет CH1.
- Скважность (Duty Cycle)
- Если синхронизация включена, СН2 использует ту же скважность, что и СН1.

Дополнительные сведения:

• Синхронизация устраняет необходимость ручной настройки CH2 – все изменения автоматически применяются к обоим каналам.

• Каждый параметр можно синхронизировать отдельно, позволяя гибко управлять настройками CH2.

Настройки конфигурации (System Configuration)

В меню **системных настроек** можно изменить **режим работы устройства**. Вход в меню конфигурации:

- 1. Откройте системное меню.
- 2. Нажмите кнопку «Конфигурация» (Config).
- 3. Используйте правые программные кнопки для изменения параметров.

Доступные параметры конфигурации:

- Выбор языка интерфейса:
- 。 «中文» (Китайский) переключает систему на китайский язык.
- «Eng» (English) переключает систему на английский язык.
- Настройка звуковых уведомлений:
- 。 Кнопка «蜂鸣» (Beep) включает или выключает звуковые сигналы (бипер) при

нажатии кнопок.

- По умолчанию звук включён.
- Настройка каскадного подключения (Multi-Unit Cascading):

。 Кнопка «主从» (Master/Slave Mode) — задаёт режим главного (Master) или подчинённого (Slave) устройства в многоприборных системах.

о По умолчанию FY6300 работает в режиме «Master» (ведущего устройства).

。 Кнопка «级 联» (Cascade) — включает или отключает режим каскадного подключения нескольких приборов.

• По умолчанию каскадное подключение отключено.

Дополнительные сведения:

- Изменения применяются немедленно после выбора соответствующего параметра.
- В многоприборных системах рекомендуется вручную назначить один FY6300 как «Master», а остальные как «Slave».

Многоприборное каскадирование (Multi-Unit Cascading)

Генератор FY6300 поддерживает каскадное подключение нескольких приборов, позволяя пользователю получить более 2 и даже больше каналов сигнала.

В сети каскадного подключения должен быть только один главный прибор (Master), а все остальные устройства должны быть подчинёнными (Slave).

Настройка каскадного режима

1. Настройка главного устройства (Master FY6300)

- 1. Откройте SYS → Конфигурация (Config).
- 2. Установите «**Режим Master/Slave**» в «**Master**».
- 3. Установите «Каскадирование» (Cascade) в «Включено» (On).

2. Настройка подчинённых устройств (Slave FY6300)

- 1. Откройте SYS → Конфигурация (Config).
- 2. Установите «**Режим Master/Slave**» в «**Slave**».
- 3. Установите «Каскадирование» (Cascade) в «Включено» (On).

3. Аппаратное соединение приборов

• Все устройства в сети каскадирования должны быть **подключены параллельно через разъём TTL.IO**.

Дополнительные сведения:

• Максимальное количество устройств в каскадном подключении – 8 (ограничено возможностями драйвера).

• После выполнения всех настроек все FY6300 в сети будут синхронизированы по начальному фазовому углу.

• Если выходные сигналы имеют одинаковую частоту, можно получить многоканальный фазово-регулируемый сигнал.