

Содержание

1 Интерфейс и функции	
1.1 Передняя панель	
1.2 Верхний интерфейс	
1.3 Интерфейс верхнего порта питания	4
2 ЖК-дисплей	4
3 Эксплуатация	
3.1 Включение/выключение и зарядка	
3.2 Подключение волокна	5
3.3 Установка условий измерения	
3.3.1 Автоматический тест	
3.3.2 Ручной тест	ε
3.4 Тестирование	7
3.5 Анализ результатов измерения	
3.6 Измерение расстояния и средних потерь	7
3.7 Сохранение, просмотр и экспорт записей	
3.7.1 Сохранение записи	8
3.7.2 Просмотр записи	8
5 Оптический измеритель мощности (ОРМ)	
6 Визуализатор повреждений волокна (VFL)	10
7 Оптический источник света (OLS)	
8 Инспекция торца волокна	11
9 Карта событий	12
10 Обновление программного обеспечения	12
11 Программное обеспечение для анализа моделирования	13
11.1 Пакетное чтение и хранение тестовых данных	13
11.2 Печать отчёта о тестировании OTDR	14
12 Обслуживание и устранение неисправностей	
12.1 Очистка разъёмов	15
12.2 Очистка экрана	
12.3 Калибровка	16
12.4 Устранение неисправностей	16

1 Интерфейс и функции

1.1 Передняя панель

ОРМ – Оптический измеритель мощности

OT2/OLS2 – Порт оптического тестера

2/Источник света 2

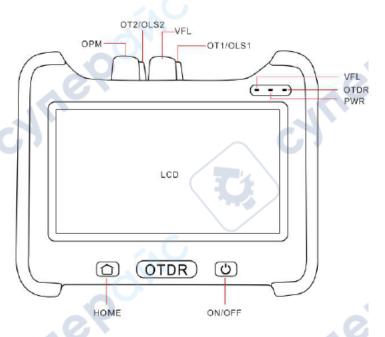
VFL – Визуализатор повреждений волокна

OT1/OLS1 – Порт оптического тестера

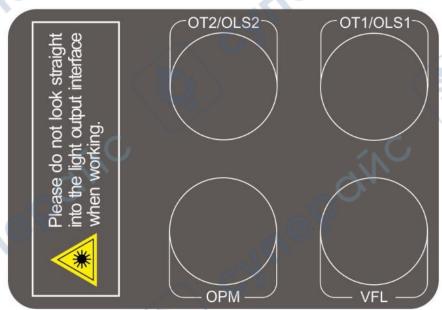
1/Источник света 1

LCD – ЖК-дисплей

НОМЕ – Кнопка "Домой"


OTDR – Кнопка функции OTDR

ON/OFF – Кнопка включения/выключения


OTDR – Индикатор работы OTDR

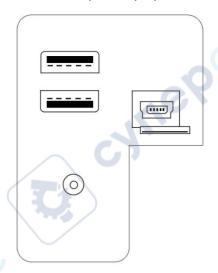
PWR – Индикатор питания

VFL – Индикатор VFL

1.2 Верхний интерфейс

OT2/OLS2 – Порт оптического тестера 2/Источник света 2

OT1/OLS1 – Порт оптического тестера 1/Источник света 1


ОРМ – Оптический измеритель мощности

VFL – Визуализатор повреждений волокна

ВНИМАНИЕ! Не блокируйте прямые соединители в выходном оптическом интерфейсе во время работы устройства.

1.3 Интерфейс верхнего порта питания

USB-интерфейс для передачи данных и зарядки устройства.

2 ЖК-дисплей

Главное меню

3 Эксплуатация

3.1 Включение/выключение и зарядка

Включение: Нажмите кнопку U на передней панели на 2 секунды. Если прибор запускается нормально, загорится индикатор PWR и на ЖК-дисплее отобразится главная страница.

Выключение: Нажмите кнопку OFF, на дисплее появится сообщение: Подтвердить выключение? Да: OK; Heт: ESC

Принудительное выключение: Если тестер работает некорректно, нажмите кнопку 0 на 6 секунд для принудительного выключения.

При нормальной работе уровень заряда батареи отображается в правом верхнем углу OTDR. Когда уровень заряда батареи слишком низкий, символ батареи станет красным в качестве предупреждения. Пожалуйста, зарядите устройство зарядным устройством, поставляемым производителем. Оставшийся заряд будет отображаться в верхней части экрана. Красный цвет светодиода на зарядном устройстве указывает, что зарядка идёт, а зелёный цвет означает, что зарядка завершена.

После включения OTDR войдите в системные настройки из главного меню, установите такие параметры, как дата, время, подсветка, яркость, автоматическое отключение питания и другую информацию.

3.2 Подключение волокна

Примечание: Из порта источника света прибора излучается свет. В любом случае оптический интерфейс OTDR и конец пигтейла, подключенного к оптическому интерфейсу, не должны быть направлены в глаза оператора или другого персонала, иначе глаза могут быть повреждены. Даже возможна слепота!

Перед подключением волокна проверьте соответствие типа разъёма и чистоту коннектора. Несовместимые или загрязнённые разъёмы могут привести к неточным измерениям и повреждению прибора. Правильный порядок действий: очистите оптический соединитель (патч-корд), особенно торцевую поверхность, изопропиловым спиртом перед подключением к прибору. После испарения спирта подключите волокно к прибору.

Если порт источника света не подключён к оптоволоконному кабелю, немедленно закройте пылезащитную крышку, чтобы предотвратить прилипание пыли к выходному порту света прибора.

3.3 Установка условий измерения

3.3.1 Автоматический тест

- 1. Нажмите кнопку OTDR/параметры
- 2. Выберите длину волны
- 3. Выберите режим тестирования
- 4. Выберите автоматический тест

Настройки автоматического режима:

Test Mode (Режим тестирования): Auto (Авто)

Wave (Длина волны): 1550nm Range (Диапазон): Auto (Авто)

Pulse Width (Ширина импульса): Auto (Авто)

Test Time (Время тестирования): 10s

Resolution (Разрешение): Standard (Стандартное)

Unit (Единицы): Meter (Метр)

Color Mode (Цветовой режим): Black (Чёрный)

Кнопки:

Start Testing (Начать тестирование)

OK / Save (ОК / Сохранить)

Restore Default (Восстановить по умолчанию)

3.3.2 Ручной тест

Ручной тест — это профессиональный режим тестирования, операторы могут устанавливать условия тестирования в соответствии с фактическим состоянием волокна.

- 1. Нажмите OTDR/параметры
- 2. Выберите режим тестирования: Manual (Ручной)
- 3. Выберите подходящие параметры

Настройки ручного режима:

Test Mode (Режим тестирования): Manual (Ручной)

Wave (Длина волны): 1550nm

Range (Диапазон): 10km

Pulse Width (Ширина импульса): 100ns Test Time (Время тестирования): 10s

Resolution (Разрешение): Standard (Стандартное)

Unit (Единицы): Meter (Метр)

Color Mode (Цветовой режим): Black (Чёрный)

Опытные инженеры могут выбирать оптимальные параметры измерения на основе накопленного опыта и характера рефлектограммы, что позволяет повысить эффективность измерений и быстрее локализовать место повреждения.

3.4 Тестирование

НАЖМИТЕ меню настройки OTDR → "Начать тест" для выполнения теста. Нажмите кнопку "Test" (Тест) в верхней части строки меню для тестирования (тест в соответствии с последним установленным значением)

3.5 Анализ результатов измерения

После завершения измерения на экране отображается рефлектограмма.

Результаты измерений и обнаруженные события отображаются в табличном виде.

Соответствующие события отмечаются маркерами на рефлектограмме.

Таблица событий:

Nº	Тип	Расстояние км	Сегмент км	Потери дБ	T.Loss дБ	Наклон дБ/км	Отражение дБ
1	入E	10.641	10.641		2.671	0.249	-30.620

Кнопки:

A/B Cursor AB (Kypcop A/B)

Add Event (Добавить событие)

Delete Event (Удалить событие)

3.6 Измерение расстояния и средних потерь

В режиме анализа OTDR выберите курсор A, курсор В или оба курсора AB. Перемещайте курсоры влево или вправо с помощью клавиш-стрелок. Расстояние и средние потери между точками В и A будут отображаться в информационной области над рефлектограммой.

Навигационные кнопки:

Pre Event (Предыдущее событие)

Nex Event (Следующее событие)

Move Left (Переместить влево)

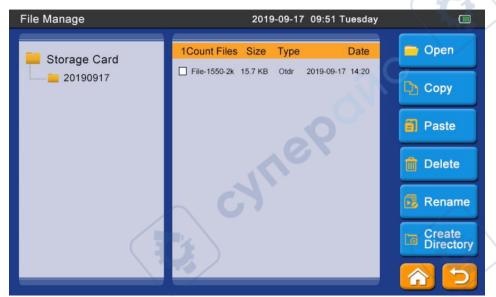
Move Right (Переместить вправо)

Cursor A (Kypcop A)

Cursor B (Kypcop B)

Cursor A+B (Kypcop A+B)

3.7 Сохранение, просмотр и экспорт записей


3.7.1 Сохранение записи

После завершения измерения нажмите "File" (Файл) \rightarrow "Save" (Сохранить) или "Save As" (Сохранить как). Откроется окно сохранения результата измерения. Вы можете изменить префикс имени файла в соответствии с местом проведения измерений, ввести начальный номер файла в соответствии с номером линии связи и нажать "Save" (Сохранить). При повторном сохранении номер в имени файла будет автоматически увеличиваться на 1.

3.7.2 Просмотр записи

Для просмотра сохранённых записей перейдите в главное меню прибора / Управление файлами.

3.7.2 Просмотр записи

4.7.3 Загрузка данных

Чтобы экспортировать результаты измерений на USB-накопитель:

- 1. Подключите USB-накопитель к порту USB в верхней части OTDR
- 2. Включите прибор
- 3. Войдите в главное меню → Управление файлами → Копировать
- 4. Скопируйте сохранённые файлы тестов на USB-накопитель

5 Оптический измеритель мощности (ОРМ)

Настройки и измерения:

Absolute Power (Абсолютная мощность): -70.00 дБм **Linearity Power** (Линейная мощность): 0.10 нВт

Wavelength (Длина волны): 1625 nm REF Power (Опорная мощность): 0.00 дБм

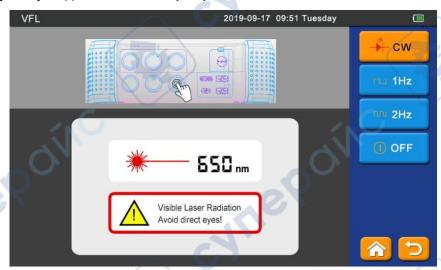
Relative Power (Относительная мощность): 0.00 дБ

Yne

CALLE

Кнопки управления:

Turn On (Включить)


Wavelength (Длина волны)

REF (Опорная)

ZERO (Ноль)

Настройте параметры теста, используя кнопки управления справа. Результаты теста отображаются в интуитивно понятном формате. При наличии отклонений в показаниях сначала очистите оптический разъём.

6 Визуализатор повреждений волокна (VFL)

Предупреждение: Видимое лазерное излучение. Избегайте прямого попадания в глаза!

Режимы:

CW: Непрерывный свет **OFF**: Выключить свет **1Hz**: Медленное мигание **2Hz**: Быстрое мигание

Напоминание: При использовании функции VFL не смотрите непосредственно на оптический интерфейс прибора и конец пигтейла, подключённого к оптическому интерфейсу, иначе это может повредить глаза или даже вызвать слепоту!

7 Оптический источник света (OLS)

В соответствии с требованиями теста выберите подходящую длину волны.

CW: Непрерывный выход света, 0 Гц

270Hz, 1kHz и 2kHz — это прерывистый выход света, имитирующий фактическую передачу сигнала данных.

8 Инспекция торца волокна

Функция позволяет быстро проверить состояние торцевой поверхности волокна. Качество изображения зависит от точности фокусировки.

Контроль изображения перед очисткой:

Кнопки управления:

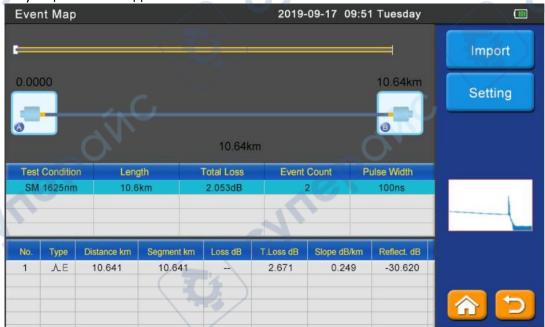
Grab Image (Захватить изображение)

Brightness + (Яркость +)

Brightness - (Яркость -)

Contrast + (Kohtpact +)

Contrast - (Контраст -)


Restore (Восстановить)

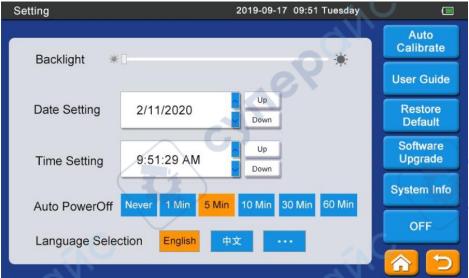
Контроль изображения после очистки:

9 Карта событий

При импорте SOR-файла карта событий графически отображает состояние оптоволоконной линии в соответствии с обнаруженными событиями. Тип разъёма отображается максимально точно на основе установленного порога отражения в соответствующей точке подключения.

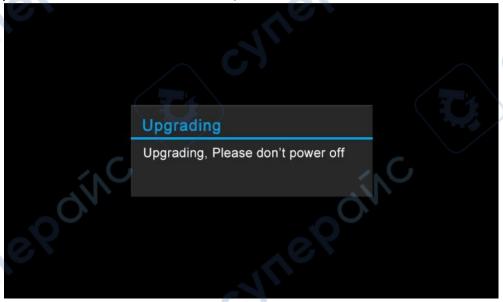
10 Обновление программного обеспечения

OTDR может быть обновлён через USB-накопитель (файл обновления должен находиться в корневом каталоге USB-накопителя).


Порядок обновления:

Скачайте файл обновления и скопируйте его на USB-накопитель

Подключите USB-накопитель к USB-интерфейсу OTDR


Включите OTDR, войдите в меню системных настроек и нажмите "Software Upgrade"

(Обновление ПО) для запуска автоматического обновления

Примечание (P.s):

Во время обновления появится сообщение:

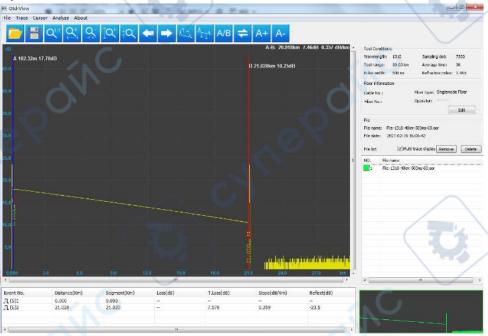
(Обновление. Пожалуйста, не выключайте питание)

11 Программное обеспечение для анализа моделирования

Устройство оснащено программным обеспечением для анализа, которое позволяет просматривать рефлектограммы на компьютере, выполнять анализ в автономном режиме, а также просматривать и печатать отчёты. Это упрощает управление и хранение данных измерений оптоволоконных линий.

11.1 Пакетное чтение и хранение тестовых данных

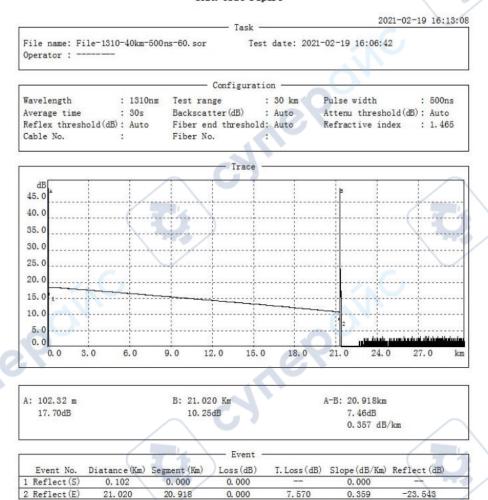
Программное обеспечение для ПК поддерживает функцию пакетной обработки, которая позволяет печатать отчёты по результатам нескольких измерений одновременно.


Включите OTDR, войдите в главное меню → Управление файлами → Копировать, скопируйте тестовые записи, сохранённые в OTDR, на USB-накопитель. Подключите USB-накопитель к компьютеру и выберите файлы для печати в режиме предварительного просмотра рефлектограмм. После выбора файлов отчёты могут быть распечатаны пакетно. Это удобно для формирования комплектов исполнительной документации.

11.2 Печать отчёта о тестировании OTDR

Отчёт о тестировании OTDR можно просмотреть в режиме предварительного просмотра печати. Отчёт содержит информацию об условиях измерения, рефлектограммы, значения затухания линии, средние потери, список событий и т.д.

Отчёты по результатам нескольких измерений могут быть распечатаны пакетно после подтверждения.


Пример отчёта:

Программное обеспечение позволяет открывать, просматривать и печатать рефлектограммы из файлов. С помощью мастера создания отчётов можно настроить размещение нескольких рефлектограмм на одной странице. Пример отчёта показан ниже:

nepoinc

OTDR test report

12 Обслуживание и устранение неисправностей

12.1 Очистка разъёмов

Оптический выходной интерфейс данного OTDR является сменным универсальным интерфейсом. Разъём должен содержаться в чистоте во время эксплуатации. Если устройство не может получить нормальную рефлектограмму или результаты измерений неточны, в первую очередь следует проверить чистоту разъёма.

При очистке обязательно выключите OTDR и функцию VFL. Отсоедините разъём и протрите торцевую поверхность специальной безворсовой салфеткой или ватной палочкой, смоченной в изопропиловом спирте.

После использования прибора обязательно закрывайте разъём защитным колпачком для предотвращения загрязнения.

12.2 Очистка экрана

Данный OTDR оснащён 7-дюймовым сенсорным ЖК-экраном. Не используйте острые предметы для управления, иначе это приведёт к повреждению экрана. При очистке протирайте ЖК-экран мягкой тканью. Не используйте для очистки органические растворители, так как это может привести к повреждению ЖК-дисплея.

JYMe

:Yne

12.3 Калибровка

Рекомендуется калибровать OTDR каждые два года. Пожалуйста, свяжитесь с поставщиком для получения конкретных пунктов калибровки.

12.4 Устранение неисправностей

Неисправность	Причины	Решения	
Не включается	Низкий заряд батареи	Зарядите батарею и следите за индикатором зарядного устройства. Если светодиод зарядного устройства красный, продолжайте зарядку. В противном случае обратитесь к поставщику.	
Не заряжается должным образом	Условия окружающей среды не соответствуют условиям зарядки	Заряжайте устройство при температуре окружающей среды от 0°C до 50°C	
должный образом	Проблема с батареей или внутренней схемой	Обратитесь к поставщику для замены батареи	
Net	Неправильные настройки параметров	Сбросьте правильные параметры теста	
Не удаётся измерить нормальную рефлектограмму	Торец волокна загрязнён	Очистите торцевую поверхность волокна	
рефлектограмму	Разъём устройства повреждён	Замените разъём	
	Разъёмы не совместимы	Замените подходящий разъём	
На рефлектограмме большой выброс.	Выходной разъём подключён неправильно	Переподключите соответствующий выходной разъём	
Форма сигнала не гладкая	Ширина импульса слишком мала	Увеличьте значение ширины импульса	
Насыщение (плоская вершина) в начале рефлектограммы	Настройка ширины импульса слишком большая	Уменьшите значение ширины импульса	
В начале рефлектограммы пик	Торец волокна загрязнён	Очистите торцевую поверхность волокна	
отражения падает	Разъём устройства повреждён	Замените разъём	
медленно и происходит затухание	Разъёмы не совместимы	Замените подходящий разъём	
Не удаётся измерить	Слишком малый диапазон настройки	Увеличьте значение диапазона	
пик отражения на конце волокна	Ширина импульса слишком мала	Увеличьте значение ширины импульса	

Ложное отображение рефлектограмм	Качество рефлектограммы плохое; Настройка порога события слишком мала	Увеличьте значение ширины импульса и увеличьте значение порога события
Измеренная длина	Неправильные настройки параметров	Сбросьте соответствующие параметры
волокна неточная	Неправильная настройка коэффициента преломления	Сбросьте коэффициент преломления волокна
Измеренное среднее значение потерь	Начальная часть рефлектограммы слишком длинная	Очистите торцевую поверхность оптического интерфейса
волокна неточное	Позиция курсора установлена неправильно	Сбросьте положение курсора

- Приведённое выше описание предназначено только для справки. Пожалуйста, обращайтесь к новым инструкциям для получения подробной информации об использовании. Если у вас возникнут какие-либо вопросы во время использования устройства, пожалуйста, свяжитесь с поставщиком для их решения.
- Во время использования OTDR запрещается разбирать устройство без разрешения, иначе гарантия будет аннулирована!