Портативный генератор сигналов FNIRSI SG-004A

Инструкция по эксплуатации

Содержание

1 Инструкции по технике безопасности	3
2 Описание	
2.1 Введение в функциональные возможности	
2.2 Клеммный интерфейс	
2.3 Питание и зарядка	4
3 Описание панели кнопок	4
4 Индикация и описание сигналов	7
4.1 Переключение типов сигналов	7
4.2 Сигнал тока (мА)	8
4.3 Сигнал напряжения (В)	8
4.4 Пассивный токовый сигнал (XMT)	8
4.5 Импульсный сигнал (Гц)	8
4.6 Сигнал в милливольтах (мВ)	
4.7 Обнаружение 24В цепи	
5 Расширенные функции	11
5.1 Инженерные значения	11
5.2 Предустановленные значения	12
5.3 Преобразование сигнала	12
5.4 Программный выход	12
5.5 График в реальном времени	13
5.6 История записей	13
5.7 Время выхода	13
5.8 Связь	14
6 Инструкции по подключению	14
7 Устранение неисправностей и обслуживание оборудования	15
7.1 Устранение неисправностей	15
7.2 Обслуживание оборудования	15
7.3 Обновление прошивки	15
2 Протоколы	16

1 Инструкции по технике безопасности

Подключите прибор к ПК и включите его. Дождитесь, пока ПК распознает USBнакопитель с именем "Bootloader".

Запрещается использовать прибор во взрывоопасной или легковоспламеняющейся среде.

Использованные батареи и вышедшие из строя устройства не подлежат утилизации вместе с бытовыми отходами. Утилизируйте их в соответствии с требованиями местного и национального законодательства.

В случае возникновения вопросов по эксплуатации или обнаружения неисправностей прибора, вы можете обратиться в службу поддержки производителя или официального дистрибьютора.

2 Описание

2.1 Введение в функциональные возможности

[Отображение инженерных величин]: Сигналы отображаются в виде физических или инженерных (т. е. числовых) значений. Физическая величина линейно соответствует инженерной. Например: токовый сигнал 4^20 мА соответствует диапазону 0^100 , то есть 4 мА соответствует 0; 12 мА — 50, а 20 мА — 100. Этот диапазон может быть изменён с помощью параметров.

[Заданные значения]: Можно задать 4 группы часто используемых значений сигнала для удобства и быстрой настройки выходного сигнала..

[Преобразование сигнала]: Входной сигнал преобразуется в выходной, возможно преобразование между различными физическими величинами. Пример: входной частотный сигнал преобразуется в токовый сигнал, при этом диапазон входа составляет 0–1000 Гц, а выход — 4–20 мА.

[Программируемый выход]: Поддерживается функция автоматического и непрерывного изменения выходного сигнала в соответствии с заданными параметрами. Доступны три режима: монотонный подъём, монотонное снижение и циклический режим.

[График в реальном времени]: Тренды изменений входного и выходного сигналов могут отображаться в виде графика. Время выборки можно задать вручную. Также возможно автоматическое масштабирование графика в пределах минимального и максимального значений за определённый период.

[Работа в режиме ведомого Modbus]: FNIRSI SG-004A поддерживает связь с конфигурационным ПО или ПЛК через интерфейс RS485; настройка параметров выполняется по протоколу Modbus в режиме ведомого устройства.

[История данных]: Запись и просмотр определённого объёма исторических данных.

[Обновление прошивки]: Прошивка обновляется через USB-интерфейс — устройство распознаётся как эмулированный USB-накопитель.

2.2 Клеммный интерфейс

На верхней панели устройства расположены 4 клеммных порта с внутренним диаметром 4 мм, обозначенных цветными кольцами.

- Синий порт (IN-) многофункциональный:
 - В обычном режиме работает как вход «минус», но может быть переключён в режим независимого источника питания 24 В.
 - В режиме входа порт (IN-) электрически соединён с чёрным портом (СОМ).
 - о В режиме источника питания между портами (IN-) и (COM) присутствует напряжение 24 В.
- Красный порт (OUT) и чёрный порт (COM) образуют выходной порт.
- Жёлтый порт (IN+) и синий порт (IN-) образуют входной порт.
- Когда порт (IN-) работает как независимый источник питания, его также можно обозначить как порт (24B). В этом режиме он совместно с портом (СОМ) формирует пару выходных клемм.

▲ Предельно допустимое напряжение на входных клеммах не должно превышать 30 В (пик-пик). Превышение приведёт к повреждению устройства.

2.3 Питание и зарядка

Встроенная батарея: литий-ионный аккумулятор большой ёмкости — 3000 мА·ч.

Индикатор заряда: Текущий уровень заряда батареи отображается в правом верхнем углу экрана.

Интерфейс зарядки: Разъём Туре-С (питание постоянного тока 5–12 В)

Состояние зарядки (до 10 Вт): Во время зарядки кнопка питания подсвечивается красным. По завершении зарядки индикатор меняется на синий, зарядка автоматически прекращается.

3 Описание панели кнопок

Все кнопки изготовлены из белого полупрозрачного силикона. Под каждой кнопкой установлена цветная светодиодная подсветка, обеспечивающая изменение цвета поверхности клавиши в зависимости от текущей функции и режима. Это обеспечивает более наглядную индикацию состояния устройства.

Клавиши условно разделены на две зоны:

Область из 3 клавиш (3-Key area)

Область из **5** клавиш (5-Key area)

Каждая кнопка выполняет несколько функций. В частности, клавиша 【FN】 и кнопки в области из 5 клавиш обладают функцией переключения вверх/вниз, а также выполняют действия, обозначенные на поверхности клавиш. Эти функции изменяются в зависимости от состояния клавиши 【FN】 и текущего интерфейсного режима.

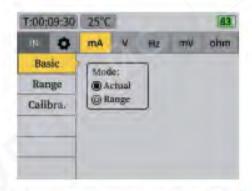
Назначение этих функций изменяется в зависимости от состояния клавиши 【FN】 и текущего режима интерфейса. При включении по умолчанию активна функция увеличения значения

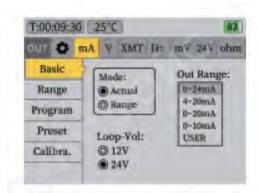
Состояние клавиши **[FN]**:

- Белая подсветка состояние по умолчанию;
- **Красная подсветка** активирован альтернативный режим.

Состояние области из 5 клавиш:

- Белая подсветка кнопки режим ручной настройки (Manual Setting Mode);
- Зелёная подсветка кнопки режим предустановленного вывода (Preset Output Mode);
- Синяя подсветка кнопки режим программирования (Programming Mode);
- Отсутствие подсветки режим преобразования (Conversion Mode).


Описание функций кнопок:


Nº	Кнопка	Функция	Описание				
1	[RUN]	Индикация	При подаче питания и включении выходного				
1	[KUN]	работы	сигнала загорается белый свет.				
2	[IN]	Клавиша	Используется для переключения режима входного				
	[[]	входного сигнала	сигнала в главном интерфейсе.				

		1	
			При включенной красной подсветке 【FN】, однократное нажатие 【IN】 открывает настройки входа.
3	[оит]	Клавиша выходного сигнала	Используется для переключения режима выходного сигнала в главном интерфейсе. При включенной красной подсветке 【FN】, однократное нажатие 【OUT】 открывает настройки выхода.
4	[FN]	Кнопка выхода / возврата	В главном интерфейсе: нажатие переводит кнопку в режим с красной подсветкой, активируя пониженную функцию других клавиш (например, переход в другие режимы). В интерфейсе настройки: выполняет функцию возврата.
5	【Main Interface】	Основной интерфейс	Главный экран отображения информации
6	[RCVK]	Клавиша "Вверх"	При белой подсветке: увеличение значения или выбор вверх. (Если выходной импульс задан количественно и курсор не активен — поведение аналогично режиму программирования.) В интерфейсе графика истории: быстрое перемещение вправо на 100 единиц. • При включённой красной подсветке клавиши [FN] (зеленая подсветка [RCVK]): - Нажатие переключает вход/выход из режима предустановленного вывода В этом режиме клавиши вверх/вниз/влево/вправо позволяют быстро вызывать предустановленные значения сигнала.
7	[AUTO]	Клавиша "Влево"	При белой подсветке: выбор влево. (Если выходной импульс задан количественно и курсор не активен — поведение аналогично режиму программирования.) В интерфейсе графика истории: пошаговое перемещение курсора влево. • При включённой красной подсветке клавиши [FN]: - Нажатие переводит устройство в/из режима программирования (синяя подсветка клавиши) В режиме программирования: Клавиша ↑ — единичная подача сигнала Клавиша ↓ — сброс Клавиша ← — завершение вывода сигнала
	- A		Клавиша → — пауза/продолжение

8	[ON/OFF]	Кнопка подтверждения	В главном интерфейсе: включение/выключение выходного сигнала. При включённой красной подсветке клавиши [FN]: нажатие запускает/останавливает запись. В интерфейсе настройки: выполняет функцию подтверждения («ОК»).				
9	【CURVE】	Клавиша "Вправо"	При белой подсветке : выбор вправо. (Если выходной импульс задан количественно и курсор не активен — поведение аналогично режиму программирования.) В интерфейсе графика истории : пошаговое перемещение курсора вправо. При включённой красной подсветке клавиши [FN] : нажатие переключает интерфейс графика и интерфейс символов .				
10	【CONVRET】	Клавиша "Вниз"	При белой подсветке: уменьшение значения или выбор вниз. (Если выходной импульс задан количественно и курсор не активен — поведение аналогично режиму программирования.) В интерфейсе графика истории: быстрое перемещение влево на 100 единиц. • При включённой красной подсветке клавиши [FN]: нажатие включает/выключает режим преобразования (Conversion Mode).				

4 Индикация и описание сигналов

[Настройки входного сигнала]

[Настройки выходного сигнала]

4.1 Переключение типов сигналов

Для переключения типа сигнала:

- 1. На главном интерфейсе нажмите клавишу **[FN]**.
- 2. После того как подсветка кнопки 【FN】 станет **красной**, выполните одно из следующих действий:
 - ⊙ Для переключения входного сигнала нажмите клавишу 【IN】 откроется интерфейс настройки входа.

- Для переключения выходного сигнала нажмите клавишу (OUT) откроется интерфейс настройки выхода.
- 3. В интерфейсе настройки выберите необходимый **тип сигнала** с помощью клавиш влево/вправо.
 - 4. Для выхода в главный интерфейс нажмите клавишу **[FN]**.
- ¶ Примечание: В каждом типе сигнала доступны различные **режимы сигналов**, а также **параметры**, которые можно изменять.

4.2 Сигнал тока (мА)

Переключение режима отображения:

В главном интерфейсе при **белой подсветке клавиши (FN)** нажмите (IN) или (OUT), чтобы переключить между отображением **фактического значения** и **инженерной величины** для входа/выхода.

Обнаружение обрыва выходной цепи:

При включённом выходе, если интерфейс отображает обрыв цепи и мигает, это означает: выходной сигнал не подключен, или значение выходного сигнала близко к нулю.

Напряжение выходной цепи по току:

Устройство **FNIRSI SG-004A** позволяет задать напряжение холостого хода (без нагрузки) на выходе по току.

- Значение 12 В используется для энергосбережения.
- Для питания некоторых устройств может потребоваться выход 24 В.

Диапазон выходного тока:

Может быть установлен предельный диапазон выходного тока.

4.3 Сигнал напряжения (В)

Переключение режима отображения:

При белой подсветке клавиши 【FN】 в главном интерфейсе нажмите клавиши 【IN】 или 【OUT】 для переключения между фактическим значением и инженерной величиной входа/выхода.

Защита от перегрузки по току:

В случае короткого замыкания на выходе по напряжению — выходной сигнал будет автоматически отключён.

Диапазон выходного напряжения:

Может быть установлен предельный диапазон выходного напряжения.

4.4 Пассивный токовый сигнал (ХМТ)

Переключение режима отображения:

При белой подсветке клавиши [FN] в главном интерфейсе нажмите клавишу [IN] или [OUT] для переключения между фактическим значением и инженерной величиной входа/выхода.

Диапазон выхода:

Можно установить предельный диапазон выходного тока в пассивном режиме.

4.5 Импульсный сигнал (Гц)

Поддерживаемые режимы импульсного сигнала:

Частота (Frequency)

- Скважность ШИМ (PWM Duty Cycle)
- Частота вращения (Speed)
- Импульсное количество / Счёт (Quantitative / Counting)

Настройка режима

Для входа:

На главном интерфейсе при белой подсветке клавиши [FN], нажмите [IN] для непосредственного переключения режима.

Для выхода:

На главном интерфейсе выполните долгое нажатие клавиши **(**OUT**)** для переключения режима выхода.

【Диапазон частоты выхода】

- 0~99.999 Гц
- o 0~999.99 Гц
- 0~9999 Гц
- о 0 ~ 200 кГц

[Метод подключения]

Выбор между уровневым выходом и выходом с открытым коллектором (open circuit) в зависимости от наличия подтягивающего резистора.

[Пиковое значение сигнала]

Максимальный уровень выходного сигнала — до 24 В.

[Метод подсчёта входных импульсов]

Передний фронт (Rising Edge): счётчик увеличивается на 1 при переходе сигнала от 0 В к пиковому значению.

Спад (Falling Edge): счётчик увеличивается на 1 при переходе сигнала к 0 В.

Скачок (Jump): счётчик увеличивается на 1 при любом изменении уровня (вверх или вниз).

Очистка счётчика: удержание клавиши [IN] выполняет сброс счётчика.

[Инструкция по работе в режиме частоты]

- Диапазон входной частоты: 0 ~ 9999 Гц (нельзя выбирать вручную, автоматическая настройка положения десятичной точки).
- Для выхода: нажмите 【OUT】 при белом свете 【FN】, чтобы переключить диапазон выходной частоты.

[Инструкция по работе в режиме ШИМ]

- Отображаются два параметра: частота (период) и скважность (duty cycle).
- Частота отображается на месте инженерного значения (инженерная величина не отображается).
 - Максимальная допустимая частота: не более 9999 Гц.
 - В режиме выхода:

Параметры частоты и скважности можно настраивать.

При белом свете клавиши **(FN)** нажмите **(**OUT**)** для переключения; жёлтый курсор указывает активное поле ввода.

[Инструкция по работе в режиме скорости]

- 1. Используется для вычисления скорости вращения двигателя или шестерни. Пример: 1 оборот = 1 импульс; 3000 об/мин = 50 импульсов в секунду.
 - 2. Единицы времени:
 - о Частота = RPS (обороты в секунду) × число импульсов за оборот
 - \circ RPM = RPS \times 60
 - \circ RPH = RPS \times 3600

Максимальная частота — до 9999 Гц

- 3. Количество импульсов на оборот устанавливается в параметрах скорости.
- 4. Отсутствие зубца (Tooth Missing): используется для симуляции оборотов двигателя (эмуляция систем зажигания). Настраивается в меню скорости.

【Инструкция по работе в режиме количественного/счётного импульса (Quantitative/Counting Mode) 】

Назначение:

Импульсное количество (Quantitative) — эмуляция датчика расхода с количественным управлением.

Счёт импульсов (Counting) — эмуляция счётного расхода.

Значение входной частоты отображается на месте инженерного значения.

Для выхода: отображается период (в мс) вместо инженерной величины.

На главном интерфейсе при белом свете клавиши [FN] нажмите [OUT] для переключения между режимами период и количество — они различаются по положению курсора.

Изменение периода возможно во время количественного вывода.

После включения выхода и исчезновения курсора — подсветка клавиш $\uparrow \downarrow \leftarrow \rightarrow$ становится **синей**.

- \circ \uparrow отправка одного импульса (Single Pulse)
- \circ \downarrow остановка программы и сброс
- ← без функции
- \circ \rightarrow старт / пауза

4.6 Сигнал в милливольтах (мВ)

【Режим】: Сигнал в милливольтах делится на три режима: 110 mV, термопара, термопара WR — в основном интерфейсе.

Когда **[FN]** отображается белым, нажмите **[IN/OUT]** для переключения.

Тип термопары : Выбор типа термопары: TC-S, B, E, K, R, J, T, N

Тип WR : Выбор типа термопары WR: WRE25, WRE26

[Единица температуры] : Установка: градусы Цельсия или градусы Фаренгейта

【Настройка холодного спая】: Выбор между температурой, определяемой прибором, или пользовательской температурой

Температура холодного спая : Заданное значение температуры холодного спая **4.7 Обнаружение 24В цепи**

Выберите метки 24В слева и справа в интерфейсе типа выходного сигнала ОUТ, чтобы войти в это состояние функции. В этом состоянии на основном интерфейсе отображается ток 24В цепи на выходе. Тип входного сигнала — неограниченный.

(1) Петля 1: После запуска выхода между портом (OUT) и портом (COM) подаётся напряжение 24В, одновременно производится измерение тока в цепи, и текущее значение отображается в области "выходная 24В цепь".

Эта функция может использоваться, например, для тестирования пневматических управляющих клапанов или двухпроводных преобразователей — с подачей питания 24B и одновременным контролем тока.

(2) Петля2: После активации независимого источника питания 24В порт (IN-) подаёт напряжение 24В между портом (24В) и портом (СОМ). Это не влияет на тип входного сигнала, определяемого через порт (IN+). В этом случае необходимо выбрать mA в качестве типа входного сигнала. Затем порт (IN-) можно объединить с портом (IN+) для формирования выхода 24В с одновременным контролем тока в цепи.

Функция аналогична петле 1.

- (3) Порт (IN-) может быть переключён в режим независимого источника питания 24В. Он подаёт одиночное напряжение постоянного тока 24В, являясь в этом случае портом (24В). Порт (24В) используется совместно с (IN+) для тестирования двухпроводных преобразователей.
 - 1 Различие между обнаружением 24В петля и независимым 24В:

Обнаружение 24В цепи подаёт выходной сигнал с возможностью измерения тока обратной связи.

② Независимый порт 24В и выходной порт могут формировать источник питания 24В, а также могут быть объединены с входом (+) для питания преобразователя и измерения тока обратной связи от преобразователя.

【Переключение режима】: Когда основной интерфейс 【FN】 белого цвета, нажмите 【OUT】, чтобы переключить отображение между фактическим значением тока в цепи и инженерной величиной.

【Активация независимого 24В】: После установки этого флажка независимый источник питания 24В начинает подачу напряжения от порта (24В) (порт IN-) и порта (СОМ), независимо от переключения типа входного и выходного сигнала.

[Активация удержания (Hold)]: После установки этого флажка при каждом включении питания устройство сохраняет состояние 24В, соответствующее предыдущему включению. В противном случае питание 24В потребуется включать вручную каждый раз.

5 Расширенные функции

5.1 Инженерные значения

При использовании аналоговых сигналов в промышленности, как правило, требуется преобразовать их в инженерные значения. Поэтому в настройках входного и выходного сигнала можно задать верхний и нижний пределы инженерных величин, а также соответствующие им пределы значений сигнала.

5.2 Предустановленные значения

[Настройка параметров] : Можно задать значения сигнала, соответствующие клавишам вверх, вниз, влево и вправо.

【Инструкция по эксплуатации】: Запуск и выход: Когда в основном интерфейсе 【FN】 горит красным, нажмите клавишу вверх 【RCVK】, чтобы войти в режим предустановки или выйти из него.

(Клавиши вверх, вниз, влево и вправо) : После запуска режима предустановки подсветка этих клавиш становится зелёной, а их функция изменяется на «выдать заданное значение».

5.3 Преобразование сигнала

Входной сигнал преобразуется в выходной.

Например: входной частотный сигнал преобразуется в токовый сигнал — диапазон входа 0—1000 Гц преобразуется в 4—20 мА.

【Настройка параметров 】:

- (1) Верхний/нижний предел входа диапазон амплитуды входного сигнала.
- (2) Верхний/нижний предел выхода диапазон амплитуды выходного сигнала.
- (3) Допуск выхода за пределы: например, при преобразовании 1–5 В в 4–20 мА. Если опция включена, то при входном сигнале 0 В выход также станет 0 мА. Если опция отключена выход составит 4 мА и останется в пределах установленного диапазона.
- (4) Автоматический запуск: при включении этой опции преобразование сигнала будет запускаться автоматически при следующем включении прибора и автоматически завершаться при выходе из режима преобразования.

[Инструкция по эксплуатации]:

【Запуск и выход】: При красной подсветке 【FN】 нажмите клавишу 【CONVRET】 для входа в режим преобразования сигнала или выхода из него.

После запуска подсветка клавиш вверх, вниз, влево и вправо отключается, и они становятся неактивными.

5.4 Программный выход

Программируемый выход позволяет автоматически выполнять N циклов выдачи сигнала в соответствии с установленными пользователем параметрами. Функция используется, например, для испытаний на износ электромагнитных или пневмоклапанов, а также для отладки программ в ПЛК.

【Настройка параметров】:

- 1.Режим: одиночный подъём, одиночное снижение, цикл.
- 2.Число циклов: 0 бесконечно, максимум 30000.
- 3. Начальное значение: значение при старте.
- 4. Конечное значение: значение при завершении.
- 5. Шаг увеличения: величина приращения за цикл.
- 6.Время шага увеличения: интервал между приращениями.
- 7. Задержка на конечном значении.
- 8. Шаг уменьшения: величина уменьшения за цикл.
- 9.Время шага уменьшения: интервал между снижениями.
- 10.Задержка на начальном значении.

【Дополнительные пояснения】:

Начальные и конечные значения в режимах одиночного подъёма и снижения выбираются вручную и не сбрасываются автоматически.

[Инструкция по эксплуатации]:

- (1) Запуск и выход: При красной подсветке 【FN】 нажмите клавишу влево 【AUTO】 для входа в режим программного выхода или выхода из него.
- (2) Клавиши вверх, вниз, влево, вправо: После запуска режима подсветка клавиш становится синей.

Вверх — одиночный запуск; Вниз — сброс программы; Влево — пошаговое выполнение; Вправо — стоп/продолжить.

5.5 График в реальном времени

[Инструкция]:

Когда основной интерфейс 【FN】 отображается красным, нажмите правую кнопку 【CURVE】, чтобы переключать интерфейс с графиком/без графика.

[Описание параметров]:

- (1) Включить график выхода: включает отображение графика выходного сигнала (красная линия)
- (2) Автоматическое масштабирование выхода: автоматически настраивает диапазон шкалы выходного сигнала и масштаб оси Y в соответствии с минимальными и максимальными значениями графика
- (3) Автоматическое масштабирование входа: автоматически настраивает диапазон шкалы входного сигнала и масштаб оси Y в соответствии с минимальными и максимальными значениями графика
- (4) Время считывания (Acquisition time): интервал обновления графика; шкала времени также будет изменяться соответственно

5.6 История записей

[Включение/отключение записи]:

Когда основной интерфейс 【FN】 отображается красным, нажмите 【ON/OFF】 для включения или отключения записи. При включении в верхней части экрана будет мигать номер текущей записи.

[Просмотр записи]:

Выберите запись, которую нужно просмотреть, в интерфейсе настроек история записей. Нажмите 【ON/OFF】 для подтверждения входа в режим просмотра.

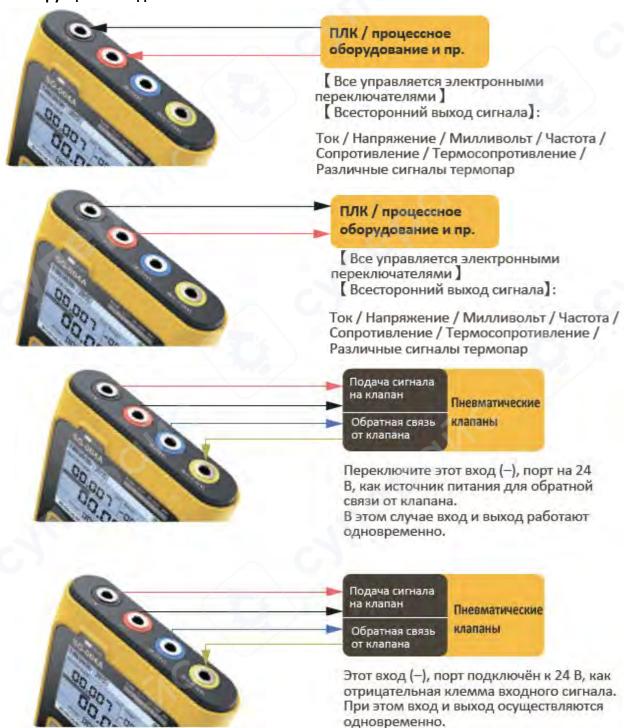
При входе в режим просмотра подсветка клавиш вверх, вниз, влево, вправо становится жёлтой, и их функции изменяются:

- -- вверх/вниз просмотр 100 предыдущих/следующих значений записей,
- -- влево/вправо просмотр 1 предыдущего/следующего значения записи.

【Удаление записи】:

Во время просмотра записи нажмите 【ON/OFF】, чтобы выбрать, удалять ли текущую запись.

5.7 Время выхода


【Автоотключение по времени **】** : При активации — выход автоматически отключается по истечении заданного времени.

[Установка времени выхода] : задаёт длительность выхода.

5.8 Связь

Примечание: после активации этой опции зарядка устройства может замедлиться. **[Сетевой адрес устройства]**: Адрес ведомого устройства по протоколу MODBUS. (См. таблицы 1, 2, 3— описание регистров прибора).

6 Инструкции по подключению

7 Устранение неисправностей и обслуживание оборудования

7.1 Устранение неисправностей

Отсутствует реакция при включении SG-004A:

- (1) Убедитесь, что аккумулятор заряжен и индикатор зарядки работает корректно.
- (2) Ошибка при обновлении прошивки может привести к сбою системы.

Некорректное отображение на экране: Проверьте, правильно ли подключён дисплей. **Аномальные выходные или измеренные значения**:

- (1) Проверьте сигнальный кабель.
- (2) Проверьте интерфейс выбора сигнала.
- (3) Превышает ли подключённый параметр диапазон, указанный в технических характеристиках?

(Это может привести к некорректной работе прибора или даже его повреждению.)

Погрешность при вводе и выводе: Погрешность возможна и считается нормальной, так как вход и выход не изолированы.

7.2 Обслуживание оборудования

Прибор питается от перезаряжаемой литиевой батареи на 3,7 В. При длительной работе рекомендуется использовать адаптер питания для продления срока службы аккумулятора.

Прибор не является водонепроницаемым — не используйте его во влажной среде.

Не размещайте устройство в местах с нестабильной опорой или с возможностью сильных вибраций.

Не используйте прибор в условиях высокой влажности, запылённости, под прямыми солнечными лучами, на открытом воздухе или вблизи источников высокой температуры.

7.3 Обновление прошивки

SG-004A использует USB-интерфейс, эмулирующий флеш-накопитель, для обновления прошивки.

[Порядок обновления]:

- (1) Подключите прибор к ПК и включите его. Дождитесь, пока компьютер распознает накопитель с именем «Bootloader».
 - (2) Скопируйте файл прошивки на USB-накопитель.
- (3) Через несколько секунд прибор автоматически включится в штатном режиме, и обновление будет завершено успешно.
- ①Если при включённом приборе USB-накопитель не определяется на ПК, выключите устройство и перезапустите его.
- ②Обновление прошивки через USB поддерживается только в ОС Windows 10. Запрещается копировать файлы, не выпущенные официально компанией FNIRSI. В противном случае возможно возникновение необратимых последствий.

8 Протоколы

【Таблица 1】

· -					
Код функции	Шестнадцатеричный	Тип данных	Атрибуты		
100	0x64	uint16_t	read		
101	0x65	uint16_t	write		
102	0x66	float	read		
103	0x67	float	write		

【Таблица 2】

Lia	Liaoninga 21				
Адрес	Шестн.	Тип данных	Атрибуты	Описание	
40001	0x9C41	uint16_t	read	Версия прошивки	
40002	0x9C42	uint16_t	RW	Входной сигнал	
40003	0x9C43	uint16_t	RW	Выходной сигнал	
40004	0x9C44	float	read	Входное значение	
40006	0x9C46	float	RW	Выходное значение	
40008	0x9C48	uint16_t	RW	Режим ПО и переключение выходов	
40009	0x9C49	uint16_t	RW	Верхний предел тока на активном выходе	
40010	0x9C4A	uint16_t	RW	Нижний предел тока на активном выходе	
40011	0x9C4B	uint16_t	RW	Верхний предел напряжения на выходе	
40012	0x9C4C	uint16_t	RW	Нижний предел напряжения на выходе	
40013	0x9C4D	uint16_t	RW	Верхний предел тока на пассивном выходе	
40014	0x9C4E	uint16_t	RW	Нижний предел тока на пассивном выходе	

【Таблица 3 】

<u>Гіаолица 3 Л</u>	<u> </u>
	Ввод (Enter)
Старшие 8 бит регистра	• 01 — ток
	 02 — напряжение
	• 03 — частота
AN'	• 04 — милливольты
	• 05 — сопротивление
Младшие 8 бит регистра	• Старшие 4 бита — тип:
767	1–8 → представляют типы: S, B, E, K, R, J, T, N по порядку
	• Младшие 4 бита — режим:
	о 1 — милливольт
	о 2 — термопара
	о 3 — термопара WR

[Пример]

Запись входного сигнала в милливольтах, термопара типа Ј

01	65	9C	42	04	62	40	AF
адрес ведомого	код	адрес	младший	старший	младший	старший	младший
устройства	функции	регистра	байт	байт	байт	байт	байт CRC
			адреса	количества	количества	CRC	
				регистров	регистров		

Пояснение:

- 01: адрес ведомого устройства
- 65: код функции записи (см. табл. 1)
- 9С42: адрес входного сигнала для чтения и записи (см. табл. 2)
- 04: тип сигнала = милливольт
- 62: термопара J (старшие 4 бита: 6 = J), режим милливольт (младшие 4 бита: 2)

Старшие 4 бита (тип):

- 1 S
- 2 B
- 3 E
- 4 K
- 5 R
- 6 J
- 7 T
- 8 N

Младшие 4 бита (режим):

- 1 милливольт
- 2 термопара
- 3 термопара WR
- 40AF: Контрольная сумма CRC (обратите внимание: необходимо отправлять в hex-формате (шестнадцатеричный))