Портативный спектроанализатор TinySA

Инструкция по эксплуатации

Введение:

Появление нескольких векторных анализаторов с названием NanoVNA привело к тому, что компания Hugen, ответственная за производство и поставку моделей NanoVNA-H и NanoVNA-H4, а также NanoVNA-V2_2, последняя из которых оснащена разъемами SMA или N, совместно с Эриком Каашуком разработали спектроанализатор под названием TinySA в том же ценовом диапазоне. Это отличный продукт со множеством продвинутых функций.

Вся эта продуктовая линейка поставляется в Дании компанией EDR.

Рис. 1

Когда вы включаете TinySA, он автоматически запускается в диапазоне частот от 0 до 350 МГц, и, как показано на рисунке 2, уровень шума составляет -90 дБм. Маленькая антенна захватила телевизионный сигнал, и маркер 1 автоматически находит самый сильный сигнал.

Он может быть программирован через USB-кабель, что позволяет создавать умные программы для управления TinySA тем, кто не застрял на уровне начинающего пользователя. Уже существует программное обеспечение для ПК, которое позволяет загружать скриншоты, упрощая составление данного документа, и некоторые примеры, показанные здесь. На рисунке 3 показан сигнал с AM-модуляцией с 70% модуляцией, а также измерение фазового шума для сигнала с частотой 30 МГц на расстоянии 0.5 МГц, где верхний текст 2 показывает измерение со значением -110.9 дБс/Гц, показанное на рисунке 4.

Рис. З

Рис. 4

Сигнал АМ с 70% модуляцией

Измерение фазового шума для сигнала с частотой 30 МГц В TinySA есть четыре маркера с различными индивидуальными функциями. Кроме того, можно включить график и отслеживать выбранный диапазон частот, а также воспользоваться множеством других функций для сохранения и запоминания максимальных или минимальных уровней.

В дополнение к основной функции спектроанализатора, TinySA может выполнять множество других задач. Он обладает шестью полосами пропускания фильтра от 3 кГц до 600 кГц в двух диапазонах частот: от 0.1 до 350 МГц с высокой производительностью и точностью + - 1 дБ, а также расширенным диапазоном частот от 240 до 960 МГц с некоторым снижением данных.

Дополнительные функции, которые не всегда присутствуют даже у профессиональных спектроанализаторов, включают:

- Гармонический анализ, например, осциллятора или передатчика.
- Автоматическое измерение OIP3 f (третьего порядка межмодуляционных искажений) усилителя или ступени усилителя мощности.
- Фазовый шум осциллятора, передатчика или усилителя.
- Генератор сигналов с выходным сигналом для обоих диапазонов частот, с программированием частоты и уровня сигнала от -6 до -76 дБм для низкого диапазона, с модуляцией АМ и FM и сканированием с возможной функцией шага в децибелах вверх или вниз для измерения линейности, и выбором пользователем диапазона сканирования во всем диапазоне от 0 до 350 МГц. Для высокочастотного диапазона уровень сигнала составляет от -38 дБм до +13 дБм с 16 предустановленными уровнями.
- Сканирование 0 (CW) на выбранной частоте, которое действует как своего рода осциллоскоп или мощностной метр, поскольку отображение можно выбрать в децибелах милливатт, децибелах милливольта, децибелах микровольта, вольтах или ватах.

Очень рекомендуется посетить веб-сайт https://www.tinysa.org/wiki/, где вы можете углубиться и получить множество подробной информации о TinySA. Там вы найдете множество видеороликов и других материалов, а также ссылку для загрузки программы TinySA.exe для ПК и последней версии прошивки.

Итак, давайте рассмотрим разнообразные возможности, предлагаемые TinySA

Стартовый экран, показанный на рисунке 5, содержит обширную информацию на левой стороне. Сверху отображается опорный уровень 0 дБм, затем 10/ - означает 10 дБ на деление от 0 дБм до -100 дБм. Atten: 0 дБ (автоматически выбрана аттенюация 0 дБ), RBW: 621 кГц (ширина полосы фильтра, автоматически выбранная для самого быстрого сканирования) в ожидании диапазона частот. Scan: 406 мс (полное сканирование за 0,406 секунды) LOW (выбран низкочастотный диапазон).

Кроме того, отображается напряжение аккумулятора и полоска, показывающая оставшуюся емкость, здесь 100%. Внизу отображается зеленая полоса прогресса при сканировании.

Рис. 5

Если нажать на произвольную точку экрана или нажать на рокер-переключатель в правом верхнем углу корпуса, будет открыто главное меню на экране, показанное на рисунке 6.

ATV1 131+012005 -01**	PRESET
	FREQUENCY
	LEVEL
	DISPLAY
	MARKER
	MEASURE
	CONFIG
Just warden and a state	MODE

ОСНОВНОЕ МЕНЮ

Подменю MODE, как показано на рисунке 7, появляется при щелчке на пункте MODE в главном меню:

Рис. 7

Нажав на "Switch to HIGH in", мы получаем новый экран, показанный на рисунке 8, с диапазоном частот от 240 до 960 МГц, и входной сигнал теперь должен быть подключен к разъему SMA, называемому HIGH.

-10 dBm	MRT	359.5	41MHz	-96.9dB	lm			-10
10/ 011 ont								-28
OdB RBW:								-30
621kHz Scan:								-40
902ms HIGH								-50
н+гэль 1.0-52				+				-68
10								-70
5								-80
100		Ų). 			2	3	-90
4.270	Indered	malled	tuby	mound	which	Amende	mentionen	-188.
-110	STAR	T 240.00	8 888 MH	ź	ST	OP 360.00	00 000 MH	z

Рис. 8

Когда все настроено по вашему желанию, установите HIGH OUTPUT в положение ON на рисунке 9.

При выборе Cal. Out: на рисунке 7 предоставляется выбор тестового сигнала на рисунке 10, который используется для различных целей. Сигнал на 30 МГц используется TinySA для выполнения самопроверки и калибровки уровня сигнала, поскольку этот уровень довольно точный (-25 дБм).

Сначала мы должны ознакомиться с этими двумя функциями.

Рис. 10

SELF TEST¹ следует выполнить при первом использовании TinySA, чтобы убедиться, что все работает должным образом. Подключите два женских разъема SMA, помеченных HIGH и LOW, с помощью тестового кабеля SMA папа-папа.

Щелкните по экрану и выберите CONFIG на рисунке 11, а затем SELF TEST на рисунке 12. Должно быть пройдено 10 различных тестов без ошибок.

¹ SELF TEST - процедура самопроверки, включает выполнение нескольких тестовых заданий, и все они должны пройти без ошибок, чтобы подтвердить правильную работу TinySA