

Осциллограф цифровой

Серия: MSO2000A/DS2000A

Руководство по эксплуатации

RIGOL (SUZHOU) TECHNOLOGIES INC.

Содержание

1. Проверка при включении	3
2. Подключение щупа	3
2.1. Подключение пассивного щупа	3
2.2. Подключение логического пробника:	4
3. Проверка работоспособности	4
4. Компенсация щупа	5
5. Передняя панель	6
6. Задняя панель	
7. Управление	
7.1. Вертикальная развертка	
7.2. Горизонтальная развертка	g
7.3. Синхронизация (триггер)	g
7.4. Многофункциональный регулятор	
7.5. Навигационный регулятор	11
7.6. Кнопки выбора функций	11
7.7. Источник сигнала	
7.8. Запись	
7.9. Печать	12
7.10. Логический анализатор	
8. Пользовательский интерфейс	13
9. Использование замка	17
10. Встроенная система помощи	17

1. Проверка при включении

Нажмите кнопку включения питания в нижнем левом углу передней панели осциллографа. Если кнопка уже включена, осциллограф запустится автоматически при подключении к сети питания. Во время запуска осциллограф выполняет серию автоматических проверок, которые сопровождаются звуком срабатывания реле. После завершения проверок отображается приветственное сообщение. На осциллографе по умолчанию установлены пробные версии опций с ограничением по времени использования 2000 минут. Если эти версии не были удалены, после запуска отображается окно «Installed Options» (установленные опции), в котором перечислены типы, названия, версии опций и оставшееся время до истечения пробного периода их использования.

2. Подключение щупа

Вместе с осциллографом поставляются пассивные щупы DS2000A и логические пробники MSO2000A. Модели щупов указаны в Руководстве пользователя для серий MSO2000A и DS2000A. Подробная техническая информация по щупам и пробникам приведена в руководствах пользователя для соответствующих щупов и пробников.

2.1. Подключение пассивного щупа

Порядок работы:

- 1. Подключите BNC-штекер щупа в разъем аналогового канала на передней панели осциллографа.
- 2. Подключите зажим заземления щупа к контакту цепи заземления и прикоснитесь контактом щупа к точке проверки измеряемой цепи.

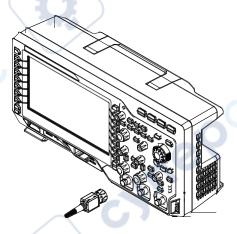


Рисунок 1. Подключение пассивного щупа.

После подключения щупа, перед проведением измерений необходимо проверить работоспособность щупа и провести настройку компенсации. Процедура проверки описана в разделах «Проверка работоспособности» и «Компенсация щупа» настоящего руководства.

2.2. Подключение логического пробника:

Порядок работы:

- 1. Подключите штекер логического пробника в цифровой разъем **[LOGIC D0-D15]** на передней панели MSO2000A (соблюдайте правильность подключения штекера).
- 2. Подключите источник тестового сигнала в другой разъем логического пробника. Вместе с MSO2000A поставляется стандартный логический пробник RPL2316. Пробник RPL2316 может подключаться тремя различными способами к источнику сигнала в зависимости от целей измерений. Более подробная информация приведена в *Руководстве пользователя для погического пробника RPL2316*.

Рисунок 2. Подключение логического пробника.

Примечание: цифровой канал осциллографа не поддерживает «горячее подключение». Запрещается подключать логический пробник к включенному осциллографу и отключать логический пробник от включенного осциллографа.

3. Проверка работоспособности

- 1. Нажмите Storage → Default для восстановления заводских настроек.
- 2. Подключите зажим заземления щупа к контакту цепи заземления осциллографа (см. рисунок ниже).
- 3. Подключите щуп к каналу СН1 осциллографа и подсоедините щуп к контакту для проверки компенсации щупа на осциллографе.

Рисунок 3. Контакт цепи заземления/контакт для проверки компенсации щупа.

- 4. Установите затухание щупа 10X. Нажмите кнопку **AUTO**.
- 5. Исследуйте форму сигнала на экране осциллографа. Если изображение отличается от приведенного, настройте компенсацию щупа (см. раздел «Компенсация щупа».

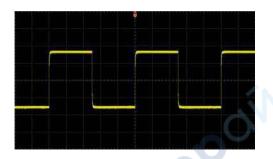


Рисунок 4. Проверка компенсации щупа.

6. Аналогичным способом проверьте остальные каналы.

ПРЕДУПРЕЖДЕНИЕ

С целью предотвращения поражения электрическим током, перед работой необходимо убедиться в отличном состоянии изоляции проводов щупа. Не прикасайтесь к металлической части щупа, когда он соединен с источником высокого напряжения.

Совет

Сигнал для настройки компенсации щупа не может использоваться для калибровки.

4. Компенсация щупа

При первом использовании щупа, а также если сигнал при проверке компенсации отличается от сигнала на рисунке 1-8, необходимо настроить компенсацию для точного согласования щупа с входными каналами осциллографа. При неточной настройке компенсации может наблюдаться большая погрешность измерений. Процесс настройки компенсации осуществляется следующим способом:

- 1. Выполните шаги 1, 2, 3 и 4, описанные в разделе «Проверка работы».
- 2. Сравните полученную форму сигнала с рисунком 1-9.

Рисунок 5. Компенсация щупа

3. С помощью неметаллической отвертки отрегулируйте компенсацию щупа поворотом регулятора в специальном отверстии щупа до получения формы сигнала, приведенной на среднем рисунке.

5. Передняя панель

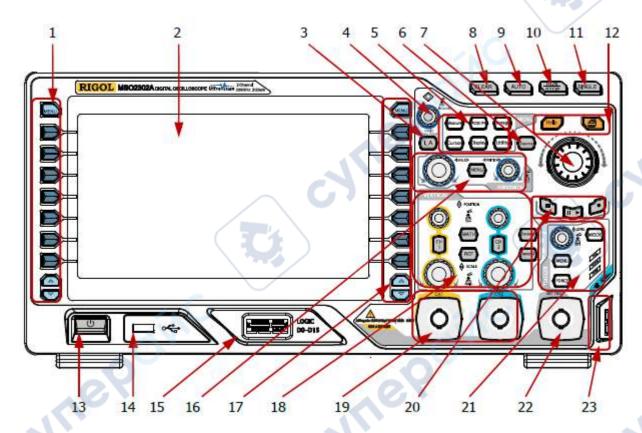


Рисунок 6. Передняя панель осциллографа.

Таблица 1. Элементы передней панели.

Поз.	Наименование	Поз.	Наименование	
1	Кнопки меню измерений	13	Кнопка питания	
2	ЖК-дисплей	14	USB-порт	
3	Кнопка проверки ИС ^[1]	15	Цифровой порт ^[1]	
4	Многофункциональный регулятор	16	Управление горизонтальной разверткой	
5	Кнопки выбора функций	17	Кнопка настройки функций	
6	Источник сигнала[2]	18	Управление вертикальной разверткой	
7	Навигационный регулятор	19	Входы аналогового сигнала	
8	Очистка	20	Кнопка записи/воспроизведения сигнала	
9	Автоматический режим	21	Управление синхронизацией	
10	Запуск/Останов	22	Вход внешней синхронизации ^[3]	
11	Однократный запуск	23	Контакты цепи заземления и источника сигнала для проверки	
			компенсации	
12	Помощь и печать			

Примечание[1]: Только в моделях MSO2000A и MSO2000A-S.

Примечание ^[2]: Только в модели MSO2000A-S.

Примечание [3]: Входное сопротивление этого канала всегда «HighZ».

6. Задняя панель

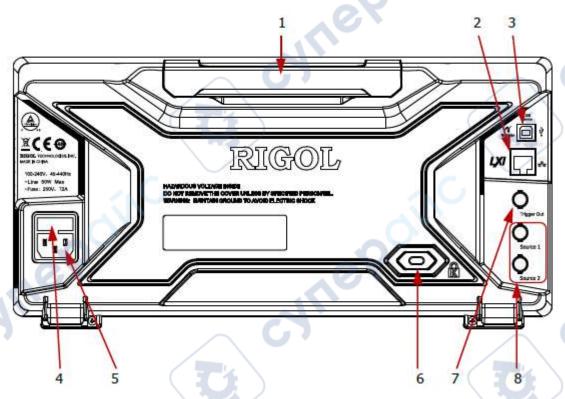


Рисунок 7. Задняя панель осциллографа.

1. Ручка

Откиньте ручку в вертикальное положение для переноски осциллографа. После переноски ручку можно опустить в горизонтальное положение.

2. Порт LAN

Порт для подключения осциллографа к сети для удаленного управления. Осциллограф поддерживает стандарты LXI CORE 2011 DEVICE и может использоваться в составе испытательной системы вместе с другими устройствами.

3. USB-порт

Используется для подключения PictBridge принтера или ПК для печати осциллограмм и управления с помощью специализированного ПО.

4. Предохранитель

Используется специализированный предохранитель (250V, T2A). Процесс замены предохранителя осуществляется следующим образом:

- Выключите осциллограф и отключите кабель питания.
- Вставьте небольшую плоскую отвертку в отверстие разъема питания и осторожно извлеките держатель предохранителя.
- Замените предохранитель в держателе и установите держатель на место.

5. Подключение к сети питания

Напряжение сети питания должно соответствовать следующим требованиям: 100-240 В переменного тока, 45...440 Гц. Для подключения к сети питания используется кабель, поставляемый вместе с осциллографом. После подключения к сети питания, включите осциллограф кнопкой питания, расположенной на передней панели осциллографа.

6. Отверстие для замка

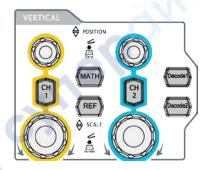
Осциллограф может быть физически заблокирован на месте установки с помощью специального замка (приобретается отдельно).

7. Выход триггера и проверки

• Выход триггера

Через данный разъем передается сигнал, по которому можно оценить текущую частоту осциллографа при триггере. Подключите сигнал к устройству отображения формы сигнала и измерьте частоту сигнала. Измеренная частота совпадает с текущей частотой осциллографа.

• Проверка


Во время проверки (pass/fail) осциллограф при обнаружении неверной осциллограммы выдает отрицательный импульс; при отсутствии неверных осциллограмм выдается непрерывный низкоуровневый сигнал.

8. Выход источника

Выход сигнала встроенного двухканального источника осциллографа. Когда активированы источники Source1 и Source2, сигнал может быть выведен на разъемы [Source1] или [Source2] на задней панели. Функция доступна только для MSO2000A-S.

7. Управление

7.1. Вертикальная развертка

CH1, **CH2**: аналоговые входные сигналы. Органы управления каналами обозначена разными цветами. Этими же цветами обозначаются осциллограммы на экране и входные разъемы каналов.

Нажмите любую кнопку для открытия меню соответствующего канала. Нажмите кнопку еще раз, чтобы отключить канал.

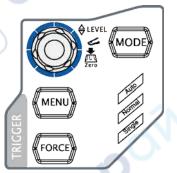
МАТН: меню математических операций. Доступны следующие операции: сложение, вычитание, умножение, деление, БПФ, цифровая фильтрация, логические операции и другие математические операции.

REF: включение эталонной осциллограммы для сравнения с полученной осциллограммой.

VERTICAL POSITION: регулировка положения осциллограммы по вертикали. Поворот по часовой стрелке сдвигает осциллограмму вверх, против часовой стрелки — вниз. При

этом в нижнем левом углу экрана отображается сообщение с текущими значениями смещения (например, роз эзоот). Нажмите на регулятор для быстрого сброса вертикального положения в нулевое положение.

Decode1, **Decode2**: меню настройки декодирования. MSO2000A/DS2000A поддерживает параллельное и протокольное декодирование.


7.2. Горизонтальная развертка

MENU: данное меню позволяет управлять задержкой развертки осциллограммы, переключаться между различными режимами временной развертки, изменять масштаб по времени, переключаться между режимами грубой и точной настройки масштаба, а

также изменять другие настройки.

7.3. Синхронизация (триггер)

MODE: переключение между режимам **Auto** (автоматический), **Normal** (нормальный, ждущий) или **Single** (однократный). Соответствующая надпись, информирующая об активном режиме, подсвечивается на экране.

TRIGGER <u>◎ LEVEL</u>: уровень триггера. Поверните регулятор по часовой стрелке для увеличения уровня, против часовой стрелки — для уменьшения уровня. Во время изменения

текущий уровень отображается линией, а его значение указывается в нижнем левом углу экрана (например, торовня триггера к нулевому значению.

MENU: меню настройки синхронизации. Осциллограф поддерживает несколько видов синхронизации:

FORCE: в режимах **Normal** и **Single** принудительно генерируется сигнал синхронизации (триггер).

CLEAR

Очистить экран. Если во время нажатия данной кнопки осуществляется измерение, то вместо удаленной осциллограммы на экране будет отображаться измеренная после нажатия на кнопку осциллограмма.

RUN/STOP

Запуск/останов измерений.

В режиме «RUN» (работа), кнопка подсвечивается желтым цветом. В режиме «STOP» (останов), кнопка подсвечивается красным цветом.

SINGLE

Активация однократного режима измерений («Single»). При активном режиме кнопка подсвечивается оранжевым цветом. При активном режиме однократного измерения можно нажать кнопку **«FORCE»** для немедленной генерации синхронизирующего сигнала и запуска измерения.

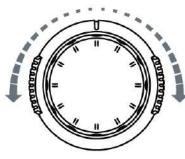
AUTO

Активация автоматического режима отображения осциллограммы. Осциллограф автоматически отрегулирует вертикальный и горизонтальные масштабы, а также режим синхронизации для получения оптимальной осциллограммы входного сигнала.

Примечание: частота входного сигнала должна превышать 25 Гц. При более низких частотах автоматический режим может работать с ошибками.

7.4. Многофункциональный регулятор

Регулировка яркости осциллограммы:

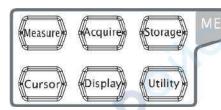


Если на экране нет активных меню, регулятор позволяет регулировать яркость осциллограммы от 0 до 100%. Поверните регулятор по часовой стрелке для увеличения яркости, против часовой стрелки — для уменьшения яркости. При нажатии на регулятор выставляется яркость 50%. Также яркость осциллограммы может быть отредактирована регулятором в меню Display → WaveIntensity.

Многофункциональный режим (включена подсветка):

Регулятором можно листать пункты подменю, предварительно нажав кнопку соответствующего меню. Нажмите на регулятор для выбора нужного пункта подменю. Также регулятор может использоваться для изменения параметров и ввода имени файла. Кроме того, в MSO2000A-S при настройке параметров (частота, амплитуда и пр.) встроенного источника сигнала, при последовательном нажатии на соответствующую кнопку меню и регулятор на экране отображается цифровая клавиатура, с помощью которой можно ввести необходимое значение, выбирая цифры с помощью регулятора.

7.5. Навигационный регулятор



Используется для быстрого изменения численных параметров в относительно большом диапазоне. Поверните регулятор по часовой стрелке (против часовой стрелки) для увеличения (уменьшения) значения. Внешний регулятор используется для изменения параметра на большое значение, а внутренний регулятор — для точной настройки значения.

Например, регулятор может использоваться для быстрого выбора кадра (в **Current Frame**) при воспроизведении осциллограммы. Также

регулятор упрощает работу при настройке удержания запуска (trigger holdoff), ширины импульса, времени нарастания/спада импульса и пр.

7.6. Кнопки выбора функций

Measure: меню настройки измерений. Позволяет изменять настройки изменений, настройки статистики и пр. Нажмите кнопку MENU слева от экрана, чтобы открыть меню с 29 параметрами измерений. Затем выберите кнопкой соответствующий пункт меню для

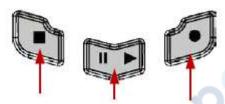
«быстрого измерения», результат будет отображаться в нижней части экрана.

Acquire: меню настройки выборки. Доступны следующие параметры: режим захвата, глубина памяти, сглаживание.

Storage: переход в меню сохранения и загрузки файла. Могут быть сохранены и загружены следующие типы данных: траектория, осциллограмма, настройки, изображение и CSV. Доступные форматы файлов с изображениями: bmp, png, jpeg и tiff. Поддерживается сохранение во внутреннюю и внешнюю память, реализована функция управления накопителями.

Cursor: меню курсорных измерений. Осциллограф поддерживает 4 режима курсорных измерений: ручной, отслеживающий, автоматический и X-Y. Примечание: режим X-Y доступен при режиме X-Y для горизонтальной развертки.

Display: меню настроек экрана. Доступны следующие параметры: тип экрана, время послесвечения, яркость осциллограммы, сетка, яркость сетки и время отображения меню.


Utility: меню настройки системных параметров. Доступны следующие основные параметры: порты, звук, язык. Кроме того, доступны дополнительные параметры: тест pass/fail, настройки записи и печати осциллограммы и пр.

7.7. Источник сигнала

Настройка источника сигнала, а именно активация/ деактивация разъемов [Source1] и [Source2] на задней панели, настройка формы и параметров выходного сигнала, включение/отключение информации о текущем состоянии источника сигнала.

Примечание: функция доступна только для MSO2000A-S.

7.8. Запись

Стоп Воспр./пауза Запись

Запись: старт записи осциллограммы. При активной функции записи кнопка мерцает красным цветом.

Воспр./пауза: воспроизведение/пауза воспроизведения осциллограммы. Кнопка подсвечивается желтым цветом.

Стоп: остановка записи/воспроизведения осциллограммы. Кнопка подсвечивается оранжевым цветом.

7.9. Печать

Печать или сохранение информации с экрана на USB-накопитель. Если подключен принтер PictBridge и находится в состоянии готовности, изображение будет распечатано на этом принтере. Если подключен не принтер, а USB-накопитель, изображение с экрана будет сохранено в формате «.png». Также можно нажать кнопку Storage для выбора типа изображения, и кнопку Pic Type для сохранения изображения в указанном формате (bmp, png, jpeg или tiff). Если одновременно подключен и принтер, и USB-накопитель, принтер имеет более высокий

Если одновременно подключен и принтер, и USB-накопитель, принтер имеет более высокий приоритет.

7.10. Логический анализатор

Меню управления логическим анализатором. Можно включить/ отключить настройки каналов или групп каналов, изменить размер отображения осциллограмм цифровых каналов, изменять логический порог цифрового канала и группы 16 цифровых каналов и отображать каналы в виде шины. Также каждому цифровому каналу можно присвоить метку.

Примечание: функция доступна только для осциллографов MSO2000A и MSO2000A-S.

8. Пользовательский интерфейс

MSO2000A/DS2000A оснащен 8-дюймовым TFT LCD дисплеем WVGA (800х480), 160 тыс. цветов. Следует отметить, что экран является ультраширокоформатным (14 ячеек сетки) и позволяет отображать более «длинные» осциллограммы.

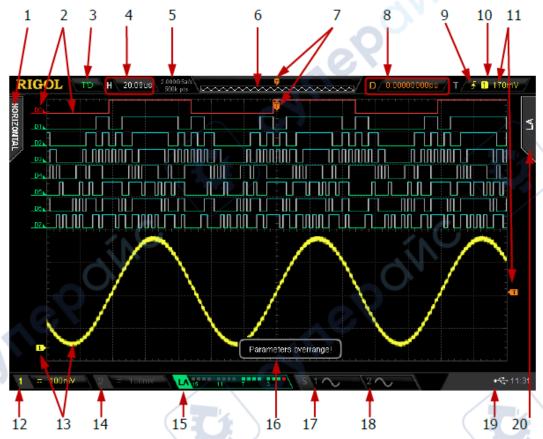


Рисунок 8. Пользовательский интерфейс.

1. Автоматическое измерение параметров

16 горизонтальных (HORIZONTAL) и 13 вертикальных (VERTICAL) параметров. Нажмите на кнопку слева от экрана для запуска автоматического измерения соответствующего параметра. Зажмите MENU для переключения между горизонтальными и вертикальными параметрами.

2. Метка цифрового канала или осциллограммы

Логический высокий уровень цифровой осциллограммы отображается синим цветом, логический низкий уровень отображается зеленым цветом (соответствует цвету метки канала). Край отображается белым цветом. Метка и осциллограмма выбранного цифрового канала отображается красным цветом.

Примечание: функция применима только для MSO2000A и MSO2000A-S.

3. Состояние

RUN (запущено), STOP (остановлено), T'D (триггер), WAIT(ожидание), AUTO (авто).

4. Горизонтальная развертка

- Масштаб сетки по горизонтальной оси.
- Развертка изменяется регулятором **HORIZONTAL** SCALE. Диапазон настройки параметра: от 1000 нс/дел до 1000 кс/div (для 200 МГц осциллографа диапазон

составляет от 2000 нс/дел до 1000 кс/дел; для 100 МГц и 70 МГц осциллографов диапазон составляет от 5000 нс/дел до 1000 кс/дел).

5. Частота дискретизация/глубина памяти

- Отображает текущую частоту дискретизации для аналоговых каналов и глубину памяти осциллографа.
- Параметр изменяется при изменении масштаба по горизонтали.

6. Сохраненная осциллограмма

Схематическое указание текущего положения осциллограммы в рамках общей сохраненной осциллограммы.

7. Положение триггера

Положение триггера на отображаемой и сохраненной осциллограммах.

8. Смещение по горизонтали

Регулятор **HORIZONTAL POSITION** позволяет управлять смещением погоризонтали. При нажатии на регулятор смещение сбрасывается.

9. Тип синхронизации (триггера)

Текущий тип и состояние триггера. Отображается в виде определенного символа. Например, символ
В означает активный режим триггера по нарастающему фронту.

10. Источник синхронизирующего сигнала (триггера)

Выбранный источник триггера (CH1, CH2, EXT, AC или любой канал D0-D15). Источник отображается определенным символом и цветом. Например, символ 11 обозначает, что источником триггера является канал CH1.

11. Уровень триггера

- Если в качестве источника триггера выбран канал СН1 и СН2, уровень отображается меткой шв правой части экрана, кроме того значение уровня отображается в верхнем левом углу экрана. Регулятор **TRIGGER** ☐ LEVEL позволяет изменять уровень триггера, метка будет перемещаться в соответствии с изменениями.
- Если в качестве источника используется параметр EXT (внешний источник), уровень триггера отображается в верхней правой части экрана, а метка триггера не отображается.
- Если в качестве источника триггера используется параметр АС, уровень и метка триггера не отображаются.
- Если в качестве источника триггера используется параметр D0 D15, уровень триггера отображается в верхнем правом углу экрана. Метка триггера не отображается.

12. Вертикальный масштаб СН1

Состояние СН1 и масштаб напряжения СН1. Кроме того, отображаются следующие метки, соответствующие текущим настройкам каналов: тип связи канала (■), входное сопротивление (♠), ограничение пропускной способности (♠). Масштаб изменяется регулятором VIRTICAL ♠ SCALE.

13. Метка и осциллограмма аналогового канала

Каналы отмечаются различными цветами, причем метка канала и осциллограмма имеет одинаковый цвет.

14. Вертикальный масштаб СН2

Состояние СН2 и масштаб напряжения СН2. Кроме того, отображаются следующие метки соответствующие текущим настройкам каналов: тип связи канала (\blacksquare), входное сопротивление (\square), ограничение пропускной способности (\square). Масштаб изменяется регулятором VIRTICAL \square SCALE.

15. Состояние цифровых каналов

Текущее состояние 16 цифровых каналов (D0...D15, справа налево). Включенные каналы отображаются зеленым цветом, выбранный канал отмечается красным цветом, выключенные каналы отмечаются серым цветом.

Примечание: функция доступна только для MSO2000A и MSO2000A-S.

16. Поле сообщений

В поле отображаются информационные сообщения.

17. Осциллограмма Source1

Отображает тип осциллограммы, выбранной для Source1.

- Если сопротивление источника сигнала установлено на 50 Ом, справа от Source1 отображается значок .

18. Осциллограмма Source2

Отображает тип осциллограммы, выбранной для Source2.

- Если сопротивление источника сигнала установлено на 50 Ом, справа от Source2 отображается значок 🔟.
- Если активирована модуляция, справа от Source2 отображается значок 🔟.

Примечание: функция доступна только для MSO2000A-S.

19. Область уведомлений

В области уведомлений отображается системное время, значок звука, значок USBнакопителя и значок принтера PictBridg.

Системное время

Отображается в формате «чч:мм (часы:минуты)». При печати или сохранении осциллограммы автоматически указывается системное время. Выберите

Utility → System → System Time → System Time для установки времени в следующем формате: гггг-мм-дд чч:мм:сс (год-месяц-день часы:минуты:секунды)

- Значок звука.
 - Если звук включен, отображается значок \blacksquare . Включение/отключение звука осуществляется в меню **Utility** \rightarrow **Sound**.
- USB-накопитель.
 - При обнаружении USB-накопителя отображается значок 🗲
- Значок принтера PictBridge
 - При обнаружении подключенного принтера PictBridge отображается значок 🔼.

20. Меню операций

Нажмите на любую кнопку для активации соответствующего меню. Список значков, которые могут отображаться в меню:

- Можно использовать регулятор она передней панели для выбора параметров. Если параметр выбирается, загорается подсветка ос.
- Можно использовать регулятор ♥ на передней панели для изменения значений параметров. Если значение параметра изменяется, загорается подсветка ♥.
- Можно использовать регулятор она передней панели для изменения значений параметров, нажатием на регулятор вызывается цифровая клавиатура для ввода значения. Если значение параметра изменяется, загорается подсветка о.
- Можно использовать **Многофункциональный регулятор** для быстрой настройки и выбора параметров.
- Можно использовать Одля регулировки параметров и нажать
 Одля выбора параметра. Подсветка Опостоянно активна.
- В текущем меню есть несколько пунктов.
- В текущем меню есть подменю.
- Возврат к предыдущему меню.

Примечание: в нижнем левом углу меню операций также могут отображаться следующие кнопки навигации:

- Открыть следующую страницу меню.
- Открыть предыдущую страницу меню.

9. Использование замка

При необходимости можно стационарно зафиксировать осциллограф на рабочем месте с помощью замка (приобретается отдельно). Для этого необходимо вставить замок в отверстие в направлении перпендикулярном задней панели и провернуть замок по часовой стрелке для запирания, после чего вытащить ключ.



Рисунок 9. Использование замка.

Примечание: не вставляйте посторонние предметы в отверстие замка для предотвращения поломки прибора.

10. Встроенная система помощи

В встроенной системе помощи отображается описание функций всех кнопок на передней панели. Нажмите Help для открытия/закрытия встроенной системы помощи. Интерфейс состоит из двух основных областей. В левой части осуществляется выбор пункта помощи во вкладках «Button» или «Index». В правой части отображается соответствующая справочная информация.

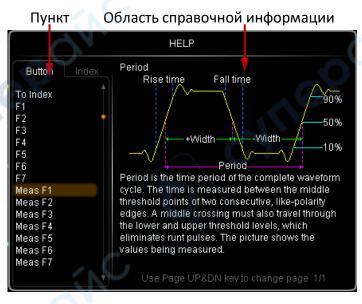


Рисунок 10. Интерфейс встроенной системы помощи.

Button:

Режим по умолчанию. Нажмите любую кнопку (кроме кнопки питания и кнопок (пометрации поверните любой регулятор на передней панели для отображения справки об этой кнопке/регуляторе. Кроме того, помощь по навигационному регулятору отображается при его вращении или при выборе «WaveSearch» регулятором. С помощью регулятора выберите «То Index» и нажмите на регулятор для переключения в режим Index.

Index:

В данном режиме элемент справки выбирается регулятором **(например, «BW»)**. Выбранный элемент подсвечивается коричневым цветом. Нажмите на регулятор для просмотра соответствующей справочной информации.

С помощью регулятора 🍑 выберите «То Button» и нажмите на регулятор для переключения в режим Button.

cynepoinc