Портативный анализатор цепей SYSJOINT SV6301A

Инструкция по эксплуатации

1 Внешний вид	
2 Главный экран	6
3 Меню	
4.1. STIMULUS	
4.1.1 SET FREQUENCY	
4.1.2 L/C MATCH	
4.1.3 IFBW	
4.1.4 POWER	
4.1.5 AVG	
4.1.6 SWEEP POINTS	
4.2. MARKER	
4.2.1 SELECT MARKER	
4.2.2 SEARCH	
4.2.3 INFO SET	
4.2.4 DRAG ON	
4.2.5 SWEEP ANALYSIS	
4.3. CAL	
4.3.1 RESET	
4.3.2 CALIBRATE	
4.4 SAVE/RECALL	
4.4.1 RECALL	
4.4.2 SAVE	
4.5 FILE	
4.6 CONFIG	
4.7 STORAGE	
4.7.1 SAVE S1P	
4.7.2 SAVE S2P	
4.8 RUN/PAUSE	
5. Физические кнопки	
5.1. Скриншот	
5.2. Указание частоты маркера	
5.3. Добавление маркера	

Содержание

	5.4. Удаление маркера	
	5.5. Переключение активного маркера	
6.	. Пользовательская информация	

1 Внешний вид

2 Главный экран

Начальная частота

- В этой области отображается начальная частота.
- Нажмите на эту область, чтобы быстро установить начальную частоту.

(2) Конечная частота

- В этой области отображается конечная частота.
- Нажмите на эту область, чтобы быстро установить конечную частоту.

3 Маркеры

- На экране может одновременно отображаться до 8 маркеров.
- Вы можете перемещать маркер двумя способами:
- 1. С помощью кнопок \blacktriangleleft или \blacktriangleright
- 2. Перетащив маркер прямо на экране.

(4) Состояние калибровки

- **О** выполнена калибровка OPEN;
 - S выполнена калибровка SHORT;
- **L** выполнена калибровка LOAD;
- **Т** выполнена калибровка THROUGH;
- # устройство откалибровано;
- * состояние калибровки не сохранено и будет потеряно при выключении питания.
 - Строка после символа # указывает путь к файлу калибровки.
 - о Для быстрого вызова состояния калибровки выберите: 【SAVE/RECALL】 →

$[RECALL] \rightarrow [RECALL n].$

 \circ

Чтобы вызвать состояние из файла .cal, выберите: 【SAVE/RECALL】 → 【RECALL】
 → 【RECALL FILE】, затем выберите нужный файл.

(5) Положение отсчета

• Треугольная стрелка указывает положение отсчета для трассы. Цвет стрелки совпадает с цветом трассы.

• Долгое нажатие на блок управления трассой вызывает меню настроек трассы, где можно выбрать **[Ref position]** для установки положения отсчета. Нижняя линия сетки соответствует положению 0, верхняя — 8.

(6) Таблица маркеров

• Таблица отображает информацию до 8 маркеров одновременно (частота и 4 других параметра).

Таблицу можно свободно перемещать по экрану.

• Для быстрого активации маркера нажмите на область частоты соответствующего маркера. Активный маркер обозначается символом >.

- \circ Управление маркерами: **[MARKER]** → **[SELECT MARKER]** → **[MARKER** n].
- настройка стиля отображения таблицы: 【MARKER】 → 【INFO SET】.

🕖 Блок управления трассой

• Содержит 4 слота для управления трассами.

• Отображает информацию о канале, формате, масштабе и состоянии включения/выключения соответствующей страссыледа.

• Нажатие на слот включает/выключает трассу.

Пример: **Tr2: S21** — трасса отображает S21, формат — Log Mag, масштаб 10 dB/деление. Если текст серого цвета, трасса выключена (как Tr4). Долгое нажатие на слот управления трассой вызовет меню настроек трассы, где вы сможете быстро настроить канал, формат, масштаб и положение отсчета для соответствующей трассы, как показано на рисунке ниже.

8 Ордината

- Левая шкала по умолчанию соответствует масштабу Tr1, правая Tr2.
- Ордината может быть переназначена через 【MARKER】 → 【INFO SET】.
- Нажмите на область ординаты для быстрого изменения масштаба.

9 Информация о батарее

- Показывает напряжение батареи, уровень заряда и статус зарядки (*).
- При низком заряде появляется предупреждающий знак (А).
 Время и дата
- Отображает текущее время и дату.
- Настройка времени и даты выполняется через 【CONFIG】.

1 Электрическая задержка

- Значение электрической задержки отображается здесь.
- Нажмите на эту область, чтобы установить электрическую задержку.

• Электрическая задержка используется для задания времени задержки в наносекундах (ns) или пикосекундах (ps) для компенсации задержки, вызванной разъемами или кабелями.

TNIOLEYS		O S L T #: /cal/nor +j1.0	mal/0.cal	14 202	2/04/16 67%
Tr1: S11 10 LogMag 10dB/Div Ob	+10.5	F	+12.0		STIMULUS
Tr2: S21 LogMag 10dB/Div	228.840 000MHz -0.0	J3dB -76.35dB 6.00Ω	-453]		MARKER
Tr3: 511 -10 Smith R+jX -20	+j0.2	out electrical d	elay:	+j5.0	CAL
Phase 90%/Div TDR: -30	-0	Sa Cr	az as	-30	SAVE RECALL
7	8	9		×	FILE
4	5	6	ps	G	CONFIG
1	2	3	ns	Clear	STORAGE
-	0	•	۰ (•	

(12) Выходная мощность RF

- Отображает мощность RF на **PORT1**.
- Диапазон настройки: от -40 до -10 dBm.

(13) Точки сканирования

- Отображает количество точек сканирования.
- Диапазон: от 101 до 1001.

(14) Среднее значение

- Отображает количество усреднений.
- Диапазон: от 1 до 25.

(15) Информационный блок TDR

• Прибор можно использовать для измерений в режиме TDR, применимо только для S11.

, чтобы включить режим

• Нажмите на соответствующую область TDR, после чего на экране появится коричневая трасса TDR.

Примечание: В режиме TDR все остальные трассы будут автоматически отключены. Чтобы восстановить другие трассы, выйдите из режима TDR. Подключите кабель к **PORT1**, оставив другой конец кабеля разомкнутым или закороченным. Затем переместите маркер к пику трассы TDR, и на экране отобразится рассчитанная длина кабеля.

וסרצאב	NT				1	0:35:38 23/02/23 39%
Tr1: S11 LogMag 10dB/Div	>1: 264.040 000	MHz		- in		STIMULUS
Tr2: S21 LogMag 10dB/Div						MARKER
Tr3: 511 Smith R+jX		TDR: 7.50	ons 384.26mm	2		CAL
Phase 90°/Div TDR:	Filter Type		C			SAVE RECALL
VF:70% Bandpass	Window Size		\sum			FILE
Ref1: Ref2:	Velocity Factor					CONFIG
EDELAY: Ops POWER:	Peak Search				C	STORAGE
-12dBm POINTS: 501	Cancel			_0,		RUNING
AVG x 1	Start 50 kHz		IFBW: 6.25kHz		Stop 4.4 GHz	11

Долгое нажатие на соответствующую область **Normal** вызывает меню настроек TDR.

• **[Filter Type]** (Тип фильтра): Используется для выбора типа фильтра обработки сигнала. Доступны три режима цифровой обработки:

о Low Pass Impulse (Импульсный низкочастотный фильтр),

о Low Pass Step (Ступенчатый низкочастотный фильтр),

Bandpass (Полосовой фильтр, по умолчанию).

• **[Window Size]** (Размер окна): Используется для выбора размера окна обработки сигнала. Доступны три уровня:

- о **Мах** (Максимальный),
- Normal (Нормальный, по умолчанию),
- o **Min** (Минимальный).

• **(Velocity Factor) (Коэффициент скорости)**: Используется для задания коэффициента скорости для тестируемого кабеля. Коэффициент скорости определяется как отношение скорости электромагнитной волны в линии передачи к скорости электромагнитной волны в вакууме. Например, типичный коэффициент скорости для кабеля RG405 составляет 70%. Чтобы определить длину такого кабеля, нажмите на область **(Velocity Factor)**, введите значение 70 на виртуальной клавиатуре и подтвердите нажатием «V».

וסרגעב	NT		10:35:38 358V 2023/02/23 39%
Tr1: 511 LogMag 10dB/Div	>1: 264.040 000	MHz	STIMULUS
LogMag 10dB/Div			MARKER
Tr3: 511 Smith R+jX		TDR: 7.50ns 384.26mm	CAL
Phase 90°/Div TDR:	Filter Type		SAVE RECALL
VF:70% Bandpass	Window Size		FILE
Ref1: Ref2:	Velocity Factor		CONFIG
EDELAY: Ops Power:	Peak Search		STORAGE
-12dBm POINTS: 501	Cancel		RUNING
AVG x 1	Start 50 kHz	IFBWI 6.25kHz Stop 4.4 GHz	

• **[Peak Search]** (Поиск пика): Используется для автоматического определения максимальной или минимальной точки сигнала и быстрого расчета расстояния.

При использовании TDR настройка подходящего диапазона частот и количества точек сканирования может повысить эффективность тестирования.

Расчет максимальной длины кабеля (Lmax):

Максимальная длина кабеля, измеряемая в режиме TDR, определяется по формуле:

$$Lmax = \frac{(N-1) \times C \times VF}{2 \times SPAN}$$

где:

- N количество точек сканирования,
- С скорость света в вакууме,
- VF коэффициент скорости,
- SPAN частотный диапазон в герцах.

Временное разрешение трассы TDR (Δt): Временное разрешение рассчитывается по формуле:

$$\Delta t = \frac{N-1}{1024 \times SPAN}$$

(16) Информационный блок о референсной трассе

Референсная трасса очень полезна для тестирования при массовом производстве. Прибор SV6301A поддерживает до 2 референсных трасс.

В качестве примера:

2eff1 Ref2:

Долгое нажатие на соответствующую область Вызывает меню настроек референсной трассы. Затем выберите 【Ref1】→ [Ref to Tr1], чтобы установить Tr1 в качестве референсной трассы. На экране появится розовая трасса Ref1. После этого трасса Ref1 будет зафиксирована, и вы сможете наблюдать разницу между Tr1 и Ref1.

Чтобы удобно наблюдать числовую разницу между Tr1 и Ref1, выберите 【MARKER】→ 【INFO SET】 в главном меню, чтобы открыть настройки таблицы маркеров, и выполните настройки, как показано ниже.

DISPLAY SET:			eX	*
INFO SET:	Tr 1	~	Ref1	~
	Close	~	Close	~
FONT SET:	16	~		
Q X	POS R	sт)		

Если вы хотите удалить трассу Ref1, нажмите и удерживайте соответствующую область

Ref1; Ref2;

, чтобы открыть меню настройки референсной трассы, затем выберите **[Ref1]**

\rightarrow [Clear].

Важно: Референсная трасса будет автоматически удалена при выключении прибора SV6301A.

(17) IFBW

Полоса пропускания ПЧ (IF bandwidth) отображается в данной области.

(18) О приборе

Нажмите на логотип В верхнем левом углу экрана или перейдите в 【CONFIG】→ 【ABOUT】, чтобы просмотреть информацию о приборе: модель, частотный диапазон, серийный номер, версию прошивки и другие данные.

סרצאב	OSLT#: /cal/norr •j1.0	mal/0.cal	10:5	3:54 7 3.55V /02/23 35%
Tr1: S11 LogMag 10dB/Div	10 >1: 379.310 000MHz -0.01dB -76.86dB 22 SkΩ	31.7kj 0.12*	10	STIMULUS
Tr2: S21 LogMag 10dB/Div			10	MARKER
Smith R+jX Tr41 511	-20 Model: SV6301A Frequency: 1M~6.3GHz		-20	CAL
Phase 90°/DIV TDR:	S/N: 2VBA241C0 Firmware: V0.4.0		-30	SAVE RECALL
VF:70% Bandpass Normal	-40 Build Time: Feb 25 2025 Support: support@sy	/sjoint.com int.com/sv6301a.html	-40	FILE
Ref1: Ref2:	-50		-50	CONFIG
Ops Power: -12dBm	-60		60	STORAGE
501 AVG x 1	-70 5tart 1 MHz IFBW: 6.25kt	5top 4.4 GH	-70	

3 Меню

4.1. STIMULUS

Меню **(STIMULUS)** включает следующие пункты:

- **[SET FREQUENCY]** (Установить частоту)
- 【L/C MATCH】 (Согласование индуктивности/емкости)
- 【IFBW】 (Полоса пропускания промежуточной частоты)
- **【POWER】** (Мощность)
- 【AVG】 (Усреднение)

• 【SWEEP POINTS】 (Точки сканирования).

4.1.1 SET FREQUENCY

Прибор SV6301А поддерживает два режима сканирования частоты:

- 1. Сканирование диапазона частот (несинусоидальное):
- Укажите начальную и конечную частоты;
- о Или укажите центральную частоту и диапазон (span).
- 2. Сканирование одной частоты (синусоидальное):
- Укажите значение **CW FREQ** (сигнал с фиксированной частотой).

57530	TINE		\wedge	67			15:2 2022/	3:34 * 139 04/16 53%
	START	50	KHZ	STOP	4.4	GHZ	EC	
•	CENTER	2.20003	GHz	SPAN	4.39995	GHz	\bigvee	
	CW FREQ		MHZ			N,C		
	e				69			
				CY'				G
							5	
								< BACK

4.1.2 L/C MATCH

Прибор SV6301A поддерживает автоматический расчет параметров согласования L/C, что позволяет согласовать нагрузочное сопротивление с источником сопротивления в 50 Ом. Структура сети согласования L/C представлена на следующем рисунке:

Пример согласования L/C: На рисунке ниже показано согласование нагрузки с импедансом 36.0 - 37.6 Ом. Прибор SV6301A автоматически генерирует 4 метода согласования:

1. Конденсатор на **4.58 пФ** параллельно источнику и катушка индуктивности на **22.0 нГн** последовательно;

2. Катушка индуктивности на **29.4 нГн** параллельно источнику и катушка индуктивности на **5.56 нГн** последовательно;

3. Катушка индуктивности на **82.6 нГн** параллельно нагрузке и катушка индуктивности на **13.0 нГн** последовательно;

4. Катушка индуктивности на **15.7 нГн** параллельно нагрузке и конденсатор на **10.3 пФ** последовательно.

4.1.3 IFBW

IFBW (Intermediate Frequency Bandwidth) — это полоса пропускания фильтра промежуточной частоты в приемнике анализатора VNA.

• Более широкая полоса IFBW увеличивает скорость сканирования анализатора VNA, но при этом позволяет большему количеству шума проникать в приемник, что снижает динамический диапазон.

• Уменьшение полосы IFBW улучшает динамический диапазон, но снижает скорость сканирования.

Полоса пропускания IFBW по умолчанию составляет 12.5 кГц. Вы можете настроить IFBW на значения 12.5 кГц, 6.25 кГц, 3.12 кГц, 1 кГц, 300 Гц, 100 Гц и 30 Гц, выбрав: 【STIMULUS】 → 【IFBW】 в главном меню.

4.1.4 POWER

Выходная мощность RF у SV6301A регулируется в диапазоне от -**40 дБм** до -**10 дБм**. Более низкая выходная мощность RF подходит для тестирования входного импеданса усилителей.

TNIOLS		05LT#: /cal/non -j1.0	mal/0.cal	20	0:55:40 # 3.55 23/02/23 35%
Tr1: S11 10 >T: LogMag 10dB/Div ot	379.310 000MHz -0.02	dB -84,20dB 243kD	26.0kj 0,12 +j2.0		SET FREQUENCY
Tr2: S21 LogMag 10dB/Div	JN/ I	XA			L/C MATCH
Tr3: 511 Smith R+jX Tr4: 511	+82	put power: -4	0~-10(dBm)	-10	IFBW
Phase 90*/Div TDR: -30)	U 0	95 19			POWER
7	8	9		×	AVG
4	5	6			SWEEP POINTS
1	2	3	(
-	0				< BACK

4.1.5 AVG

Прибор SV6301A поддерживает усреднение данных для снижения шума на трассе. Количество усреднений может быть установлено в диапазоне от **1 до 25**.

При настройке усреднения на экране появится индикатор выполнения сбора данных.

4.1.6 SWEEP POINTS

Количество точек сканирования может быть установлено в диапазоне от 101 до 1001.

THIOLEYE		05LT#: /cal/no +j10	ormal/0,cal	12	2:48:29 5 3.977 2/04/17 78%
Tr1: S11 10 >1 LogMag 10dB/Div at	: 334.440 000MHz -0	01dB -90.63dB 53.5	kn -41.4kj	10	SET FREQUENCY
Tr2: S21 LogMag 10dB/Div		XTA	(PA)	10	L/C MATCH
Tr3: S11 -10 Smith R+jX Tr4: S11 -20	+0.2	put sweep poi 001	nts: 101~1001	+J5 0 20	IFBW
Phase 90°/Div TOR: -30			A A		POWER
7	8	9		×	AVG
4	5	6		0	SWEEP POINTS
1	2	3		>	
-	0				< BACK

4.2. MARKER

Меню **(MARKER)** включает следующие пункты:

- 【SELECT MARKER】 (Выбор маркера)
- **【SEARCH】** (Поиск)
- **【INFO SET】** (Настройка информации)
- **[DRAG ON]** (Перетаскивание)
- **[SWEEP ANALYSIS]** (Анализ сканирования).

4.2.1 SELECT MARKER

Меню **[SELECT MARKER]** включает следующие пункты:

- [MARKER 1]
- MARKER 2
- [MARKER 3]
- [MARKER 4]
- **(МОКЕ)** (Дополнительные маркеры)
- **【ALL OFF】** (Выключить все маркеры).

(MARKER n) используется для включения, выключения или активации маркера:

• Если маркер выключен (например, маркер 3), нажатие на **[MARKER 3]** включит его, а в таблице маркеров перед маркером 3 появится символ '>', указывающий, что маркер 3 активирован.

• Нажатие на **(МАККЕК 3)** снова выключит маркер 3.

Нажатие на пункт меню, соответствующий включенному маркеру, активирует этот маркер. Например:

• В таблице маркеров маркер 4 активен.

• Если нажать на **[MARKER 1]**, символ '>' переместится в первую строку таблицы, указывая, что маркер 1 стал активным.

[ALL OFF] используется для одновременного выключения всех маркеров.

4.2.2 SEARCH

На странице **(SEARCH)** вы можете настроить метод отслеживания для каждого маркера индивидуально. Обратите внимание: чтобы включить отслеживание, необходимо установить галочку перед соответствующей ячейкой.

TNIOLOY	13:42:45 # EMM 2022/04/17 76%
MARKER 1	MARKER 2
🖌 Tr1 🗸 Min 🗸	✓ Tr1 ✓ Max ✓
MARKER 3	MARKER 4
Tr2 - Min -	TrZ - Max -
MARKER 5	MARKER 6
Tr3 ~ Min ~	Tr3 v Max v
MARKER 7	MARKER 8
Tr4 - Min -	Tr4 🗸 Max 🗸
0	< BACK

4.2.3 INFO SET

Нажмите на **[INFO SET]**, чтобы открыть диалоговое окно **'DISPLAY SET'**. В этом окне доступны следующие настройки:

- [INFO SET]
- FONT SET
- [POS RST].

SYSJON	T	OSLT#: /cal/normal/0,cal	14:0	9:11 🗲 💷 🕬
Tr1: S11 LogMag 10dB/Div	>1: 334.440	000MHz -0,02dB -85.11dB 32,9k0 -23,5kj -0.00*	10	SELECT
Tr2: 521 LogMag 10dB/Div			-10	SEARCH
Smith R+JX Trd: 511 -2	a,		-20	INFO SET
Phase 901/Div TDR: -3	0 8 0		-30	DRAG ON
VF:70% Bandpass Normal -4	o	FONT SET: 16 V	-40	SWEEP
Ref1: Ref2: -5	i0,	POS RST	-50	
Ops Power: -12dBm -6 Power:		105	-60	
AVG x 5 -7	0 Start 50 kHz	EEW/ b.25kHz Stor	4.4 GHz -70	< BACK

[INFO SET] используется для выбора, данные каких трасс будут отображаться в таблице маркеров. Доступные опции: **Tr1**, **Tr2**, **Tr3**, **Tr4**, **Ref1**, **Ref2** и **Close** (отключить). Например:

Левая ордината соответствует масштабу **Tr1**, а правая — масштабу **Tr2**.

• Таблица маркеров показывает значения **Tr1**, **Tr2**, **Tr3** и **Tr4**, что соответствует настройкам в диалоговом окне 'DISPLAY SET'.

(FONT SET) используется для настройки размера шрифта в таблице маркеров. Доступные размеры шрифта: **16**, **18**, **20** и **24**.

Если таблица маркеров случайно была перемещена к краю экрана и ее невозможно вернуть назад, нажмите **[POS RST]**, чтобы вернуть ее в исходное положение.

4.2.4 DRAG ON

[DRAG ON] используется для включения или отключения возможности перемещения маркера.

4.2.5 SWEEP ANALYSIS

[SWEEP ANALYSIS] используется для автоматического анализа полосы частот фильтра или антенны.

Пример анализа полосового фильтра:

- 1. Установите подходящий частотный диапазон.
- 2. Отключите все маркеры, кроме Marker1.

3. Переместите **Marker1** в полосу пропускания полосового фильтра.

4. Нажмите на **[SWEEP ANALYSIS]**, чтобы открыть диалоговое окно анализа Sweep Analysis. В этом окне выберите тип анализа — **"Bandpass Analysis"** (анализ полосового фильтра).

Результаты анализа будут отображены в диалоговом окне, где вы сможете получить следующую информацию о фильтре:

- Центральная частота;
- Ширина полосы пропускания;
- Качественный фактор;
- Частоты среза;
- Коэффициент ослабления (roll-off ratio) и другие параметры.

4.3. CAL

- Меню **[CAL]** включает следующие пункты:
 - 【CALIBRATE】 (Калибровка)
 - **【RESET】** (Сброс).

4.3.1 RESET

Нажатие на **(RESET)** очищает состояния калибровки, сохраненные в оперативной памяти (RAM). Индикаторы состояния калибровки **'OSLT#*'** также исчезнут.

Однако состояния калибровки, сохраненные на карте памяти, не будут удалены. Их можно восстановить, выбрав: **[SAVE/RECALL]** → **[RECALL]** → **[RECALL**] → **[RECALL**] → **[RECALL**]

4.3.2 CALIBRATE

[CALIBRATE] используется для выполнения калибровки.

Перед началом калибровки подготовьте следующие аксессуары:

- 1. Переходники **N-to-SMA**;
- 2. Калибровочная заглушка SMA OPEN;
- 3. Калибровочная заглушка SMA SHORT;
- 4. Калибровочная заглушка SMA LOAD;
- 5. Коаксиальный кабель **SMA-JJ**;
- 6. Переходник **SMA-КК** (опционально).

Сначала установите подходящий частотный диапазон. Нажмите 【CALIBRATE】, чтобы войти в меню калибровки, и выполните калибровку в соответствии со следующими шагами: Шаг (1)

Подключите переходники N-to-SMA к портам PORT1 и PORT2, затем подключите калибровочную заглушку OPEN к порту PORT1 или к концу кабеля, подключенного к порту PORT1, как показано на рисунке ниже.

Нажмите 【OPEN】, чтобы выполнить калибровку OPEN. После завершения калибровки OPEN в меню 【OPEN】 появится значок ✓, а в верхней части экрана появится буква 'O', указывая на то, что калибровка OPEN выполнена.

ПРИМЕЧАНИЕ: При подключении тестируемого устройства (DUT) к анализатору VNA через кабели, кабель становится частью измерительной системы, а его конец становится портом VNA.

Шаг (2)

Подключите калибровочную заглушку SHORT к порту PORT1 или к концу кабеля, подключенного к порту PORT1, затем нажмите [SHORT], чтобы выполнить калибровку SHORT.

Шаг (3)

Подключите калибровочную заглушку LOAD к порту PORT1 или к концу кабеля, подключенного к порту PORT1, затем нажмите [LOAD], чтобы выполнить калибровку LOAD.

Шаг (4)

Подключите **PORT1** и **PORT2** с помощью кабеля и, при необходимости, переходника, как показано на рисунке ниже, затем нажмите **[THRU]**, чтобы выполнить калибровку **THRU**.

Шаг (5)

Нажмите **[DONE]**, после чего строка **'OSLT #*'** появится в верхней части экрана, указывая на то, что состояние калибровки было создано, но еще не сохранено.

Нажмите **[SAVE n]**, чтобы сохранить состояние калибровки. Частотный диапазон, соответствующий состоянию калибровки, будет отображаться на пункте меню. Вы также можете нажать **[SAVE FILE]**, чтобы сохранить состояние калибровки в файл с пользовательским именем.

При правильной калибровке анализатор цепей VNA должен демонстрировать следующие характеристики:

1. Когда PORT1 разомкнут (open-circuited):

- Трасса **S11 Smith** сходится в правой части диаграммы Смита.
- о Значение **S11 LOGMAG** близко к 0 дБ.
- о Для трассы **S21 LOGMAG** чем меньше значение, тем лучше.
- 2. Korдa PORT1 закорочен (short-circuited):
- Трасса **S11 Smith** сходится в левой части диаграммы Смита.
- о Значение **S11 LOGMAG** близко к 0 дБ.
- о Для трассы **S21 LOGMAG** чем меньше значение, тем лучше.
- 3. Когда PORT1 подключен к нагрузке 50 Ом:
- о Трасса **S11 Smith** сходится в центре диаграммы Смита.
- о Для трасс **S11** и **S21 LOGMAG** чем меньше значение, тем лучше.
- 4. Когда PORT1 и PORT2 напрямую соединены RF-кабелем:
- Трасса **S11 Smith** близка к центру диаграммы Смита.
- о Значение **S21 LOGMAG** близко к 0 дБ.
- о Для трассы **S11 LOGMAG** чем меньше значение, тем лучше.

4.4 SAVE/RECALL

[SAVE/RECALL] содержит следующие пункты меню:

- **【RECALL】** (Вызов)
- **【SAVE】** (Сохранение).

4.4.1 RECALL

Нажмите **[RECALL n]**, чтобы вызвать состояние калибровки из слота **n**.

• Нажмите **(RECALL FILE)**, чтобы открыть диалоговое окно **'Recall from file'**, затем выберите файл с расширением **.cal**, чтобы восстановить соответствующее состояние калибровки.

Пользовательские файлы калибровки сохраняются в папке /cal.

4.4.2 SAVE

• Нажмите **(SAVE n)**, чтобы сохранить состояние калибровки. Частотный диапазон, соответствующий состоянию калибровки, будет отображаться в пункте меню.

• Вы также можете нажать **(SAVE FILE)**, чтобы сохранить состояние калибровки в файл с пользовательским именем.

Автоматически сгенерированное имя файла представляет собой строку, содержащую информацию о начальной и конечной частотах, выходной мощности RF, полосе пропускания IF и количестве точек сканирования.

Вы можете изменить имя файла с помощью виртуальной клавиатуры.

סרצאב	INT			OSLT#	: /cal/2	.00G_3.00	G12dBm	_6.25kHz_	501p.cal	16:2	1:06 4.11V 04/18 100%
Tr1: S11 LogMag 10dB/Div	0 0	2200.000 000	(Hz 0.0	1dB -80.0	BdB -47.1	kΩ 57.9k		##		10	SAVE 0 50K-4,40G
LogMag 10dB/Div Tr3: 511	-10		Ple	ase ent	er the	filenar	ne to s	ave		-10	SAVE 1
Smith R+jX Tr4: S11	-20	*j02/	2.2	0G_2.7	0G12	dBm_0	6.25kH	z 🕺	+)5.0	-20	SAVE 2
Phase 90°/Div						-			1		SAVE 3
	q	w	e	K	t	У	ú	1	e e		a
АВС	a	5	d	J.	g		h	i	k	I	Enter
F		z	×	t	×	b	n	m	P.	•	
	*0	P	¢				10	0,		~	

4.5 FILE

Нажмите **[FILE]**, чтобы перейти в интерфейс управления файлами. Здесь вы можете выполнять операции с файлами на устройстве **SV6301A**, включая просмотр, поиск, копирование, вставку, переименование, удаление и другие действия.

TRIDLEYE	16:24:36 (Linv) 2022/04/18 93%
	U_DISK MODE
2 A al Search file	IMAGE
image (5) 9	CAL
Rename file	51P
3 In s2p File information File name : update.bin File name : update.bin File name : update.bin File name : update.bin	SZP
System Volume Information Creat time: 2022/04/17 16:04	
Upgrate bin Open Rename	
	< BACK

① Путь к файлу

В этой области отображается текущий путь.

(2) Значок «Домой»

Нажмите на значок «Домой» () для возврата в родительский каталог. Если текущий путь — корневой каталог, нажатие обновит содержимое каталога.

Долгое нажатие на значок «Домой» вызывает быстрое меню с пунктами:

- о **[Paste]** (Вставить)
- о **[New folder]** (Создать папку)
- о **[Remount]** (Переподключить).

[Paste] — вставляет скопированный файл или папку в корневой каталог. Этот пункт меню не отображается, если ранее не было операций копирования или вырезания.

[New folder] — создает новую папку в корневом каталоге.

[Remount] — переподключает карту памяти при ошибке доступа к файлу.

- Э Список файлов
- Нажатие на папку открывает ее подкаталог.
- Нажатие на файл выделяет его, после чего информация о файле отображается справа. Вы также можете открыть или переименовать выбранный файл.
 - Долгое нажатие на файл или папку вызывает быстрое меню с пунктами:
 - 【Сору】 (Копировать)
 - о **[Cut]** (Вырезать)
 - о **[Delete]** (Удалить).

0

【Сору】 — копирует файл или папку. После этого перейдите в целевой каталог, нажмите и удерживайте значок «Домой», выберите **【Paste】**, чтобы вставить файл или папку в целевой каталог.

[Cut] — вырезает файл или папку. После этого перейдите в целевой каталог, нажмите и удерживайте значок «Домой», выберите **[Paste]**, чтобы переместить файл или папку в целевой каталог.

[Delete] — удаляет файл или папку. При удалении появится диалог подтверждения.

- Выберите **'ОК'** для подтверждения удаления.
- о Выберите **'CANCEL'** для отмены удаления.

(4) Использование карты памяти

В этой области отображается информация об использовании внутренней карты памяти. **(5) Поиск файла**

Нажмите на строку поиска, чтобы ввести ключевые слова, затем нажмите на значок лупы для запуска поиска. Результаты поиска отобразят все файлы, содержащие введенные ключевые слова, в текущем каталоге.

(6) Переименование файла

Чтобы переименовать файл:

- 1. Выберите файл.
- 2. Нажмите на строку переименования, введите новое имя файла.
- 3. Нажмите кнопку **(Rename)** для выполнения переименования. Чтобы переименовать папку:

- 1. Нажмите и удерживайте папку, чтобы открыть быстрое меню.
- 2. Выберите **[Cancel]**, чтобы выделить папку.
- 3. Введите новое имя и подтвердите переименование.

⑦ Информация о файле

Имя, размер и время создания выбранного файла отображаются в этой области.

(8) Открыть

Нажмите кнопку **[Open]**, чтобы открыть выбранный файл. Открытие доступно только для следующих типов файлов:

- Файлы калибровки,
- Файлы формата **snp**,
- Снимки экрана.

SV6301A поддерживает новую функцию открытия и загрузки файлов **snp**, что особенно полезно для массового производства и тестирования. Метод выполнения операции следующий:

Шаг 1:

Выберите эталонный образец и сохраните результаты тестирования в файле формата s2p. В данном примере рассматривается низкочастотный фильтр LC с полосой пропускания 40 МГц.

02:51:39 2022/07/22 86% TNIOLEY 3:90V 0:/s2p U DISK MODE 22.188MB/7.296GB A ..! IMAGE Search file Q CAL Rename file S1P .s2p File information S2P OMC File name : 20220722025050.s2p File size : 28KB Creat time: 2022/07/22 2:50 Open Rename < BACK

Нажмите **【<BACK】**, чтобы вернуться на главный экран. Сканирование будет автоматически приостановлено при загрузке файла **s2p**.

Шаг 3:

Шаг 2:

Нажмите и удерживайте информационный блок трассы Reference trace, чтобы установить **Ref1** в качестве ссылки на **Tr1** и **Ref2** в качестве ссылки на **Tr2**.

Нажмите **[FILE]** в главном меню и перейдите в каталог **/s2p**, чтобы открыть файл **s2p**.

Шаг 4:

Удалите эталонный образец и замените его тестируемым образцом, затем нажмите **(PAUSED)** в главном меню, чтобы возобновить сканирование.

• Если кривая тестируемого устройства (DUT) почти совпадает с кривой эталонного образца, тестируемое устройство будет считаться соответствующим требованиям (pass).

• Если кривая тестируемого устройства отклоняется от кривой эталонного образца, тестируемое устройство будет считаться несоответствующим требованиям (failure).

9 Переименование

Нажмите кнопку **[Rename]**, чтобы переименовать выбранный файл или папку. **Ю Быстрое меню**

[U_DISK MODE] :

Подключите **SV6301A** к ПК с Windows с помощью кабеля USB Type-C, затем нажмите **(U_DISK MODE)**. На вашем ПК появится новый диск, и вы сможете получить доступ к файлам на карте памяти устройства **SV6301A**.

Примечание: Создание скриншотов недоступно в режиме U-диска.

• 【IMAGE】: Используется для поиска всех скриншотов, сохраненных на карте памяти.

- **[CAL]** : Используется для поиска всех файлов .cal на карте памяти.
- **[S1P]** : Используется для поиска всех файлов **.s1p** на карте памяти.
- **[S2P]** : Используется для поиска всех файлов **.s2p** на карте памяти.

Примечание: Если на карте памяти много файлов, время поиска может увеличиться.

4.6 CONFIG

На странице настроек доступно 4 параметра конфигурации: LANGUAGE, SLEEP TIME, TIME и BKLIGHT.

• **LANGUAGE:** Поддерживается 4 языка: китайский, английский, французский и русский.

• SLEEP TIME: Если пользователь не выполняет операции с SV6301A в течение заданного времени, устройство автоматически перейдет в спящий режим для экономии энергии. Интервал автоматического перехода в спящий режим может быть установлен на 10 минут, 20 минут, 30 минут, 40 минут или никогда.

• **TIME:** Пользователь может установить год, месяц и день с помощью календаря, час и минуты — с помощью виртуального колеса. Нажмите кнопку **[SETTING]**, чтобы завершить настройку.

• **BKLIGHT:** Перемещайте ползунок, чтобы настроить яркость подсветки.

- **СОММАНD:** Выбор порта связи.
- о **USB COM:** Использует порт **USB-ТҮРЕ-С** для подключения к ПК.

о **TTL UART:** Использует порт **USB-А** для подключения к ПК (требуется специальный модуль преобразования).

TNIOLEYE		11:48:09 1.61 2023/02/21 42%
LANGUAGE	中文 SLEEP TIME 10 minutes~	PRESET
	English Français PVCCKИЙ FL Sa	ABOUT
TIME	12 30 29 30 31 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	G
	26 27 28 1 2 3 4 5 8 7 8 9 10 11 2023/02/21	
BKLIGHT	14%	2
COMMAND	USB COM TTL UART	< BACK

- **[PRESET]** Сброс к заводским настройкам. Файлы калибровки сохраняются.
 - **(ABOUT)** Отображает информацию об устройстве.

4.7 STORAGE

Меню **(STORAGE)** содержит следующие пункты:

- **【SAVE S1P】** (Сохранить в S1P)
- **【SAVE S2P】** (Сохранить в S2P).

4.7.1 SAVE S1P

Нажмите **【SAVE S1P】**, чтобы сохранить данные параметров **S** в файл формата **S1P**. Этот файл можно экспортировать на ПК через порт **USB Type-C**.

4.7.2 SAVE S2P

Нажмите **[SAVE S2P]**, чтобы сохранить данные параметров **S** в файл формата **S2P**.

4.8 RUN/PAUSE

Нажмите, чтобы приостановить сканирование. Нажмите снова, чтобы возобновить сканирование.

5. Физические кнопки

Устройство **SV6301A** имеет 4 физические кнопки, которые можно использовать для выполнения быстрых операций при однократном нажатии, двойном нажатии, удержании или комбинации клавиш.

5.1. Скриншот

Нажмите и удерживайте кнопку **Fn**, затем нажмите кнопку **Ctrl**, чтобы сделать скриншот. Скриншоты автоматически именуются по времени создания и сохраняются в каталоге **/image**.

5.2. Указание частоты маркера

Удерживайте кнопку **Ctrl**, чтобы открыть клавиатуру. После ввода значения частоты активный маркер переместится прямо на указанную частотную точку.

5.3. Добавление маркера

Дважды нажмите кнопку **Ctrl**, чтобы быстро добавить новый маркер. Новый маркер станет активным.

5.4. Удаление маркера

Дважды нажмите кнопку **Fn**, чтобы быстро удалить активный маркер.

5.5. Переключение активного маркера

• Нажмите и удерживайте кнопку **Fn**, затем нажмите кнопку **ব**, чтобы отключить текущий маркер и активировать предыдущий маркер.

• Нажмите и удерживайте кнопку **Fn**, затем нажмите кнопку **▶**, чтобы отключить текущий маркер и активировать следующий маркер.

6. Пользовательская информация

Анализатор SV6301A поддерживает отображение пользовательской информации на экране загрузки. Метод настройки следующий:

1. Создайте текстовый файл с именем «user_info.txt» на вашем компьютере.

2. Откройте файл «user_info.txt» и введите текстовую строку, которую вы хотите отобразить на экране загрузки (только печатные ASCII-символы). Максимальная длина строки — 50 символов.

3. Подключите SV6301A к компьютеру и перейдите в режим U-диска, затем скопируйте файл «user_info.txt» в корневой каталог U-диска.

4. Перезагрузите SV6301А.