# Расширенный набор Keywish Умный дом



# Инструкция по сборке и подключению

## Содержание

| 1 Обзор компонентов                                  |    |
|------------------------------------------------------|----|
| 2 Этапы сборки модели «Умный дом»                    | 6  |
| 3 Монтаж внутренних электронных компонентов          | 8  |
| 4 Подключение системы «Умный дом»                    |    |
| 4.1 Подключение датчиков                             | 20 |
| 4.2 Описание комплексных функций системы "Умный дом" |    |
| 4.3 Пример программы для системы "Умный дом"         |    |

### 1 Обзор компонентов

## 1. Общий вид изделия



Рисунок 1-1 — общий вид устройства

2. Компоненты каркаса для сборки



Рисунок 1-2 — элементы конструкции корпуса и каркаса изделия

### 3. Электронные модули, входящие в состав набора



Модуль датчика движения (ИК-сенсор присутствия человека)



Сенсорный датчик (модуль касания)



Инфракрасный датчик препятствий



Модуль фоторезистора



Модуль газового датчика



Электродвигатель постоянного тока (DC) с вентилятором



Модуль светофора



Пассивный зуммер (пьезоэлектрический звуковой модуль)



Сервопривод SG90



Сегментный цифровой индикатор (дисплей)



Датчик пламени



Коннектор типа DC



Модуль датчика температуры и влажности



Модуль матричной клавиатуры



Модуль датчика капель

дождя



Модуль инфракрасного

приёмника



Расширительная плата I2C



Основная плата BLE-UNO



Винты M3×10 и M2×10

4. Перечень комплектующих

| No  | Наименование                       | Кол- | No  | Наименование             | Кол-       |
|-----|------------------------------------|------|-----|--------------------------|------------|
| IN2 | Паименование                       | во   | IN2 | Паименование             | во         |
| 1   | Деревянная монтажная плата         | 1    | 19  | Газовый датчик           | 1          |
| 2   | Модуль ИК-датчика движения         | 1    | 20  | Датчик пламени           | 1          |
| 3   | Модуль светофора                   | 1    | 21  | ИК-пульт дистанционного  | 1          |
|     | (красный/зелёный)                  | -    |     | управления               | -          |
| 4   | Электродвигатель с<br>вентилятором | 1    | 22  | LED-дисплей              | 1          |
| 5   |                                    | 1    | 22  | Модуль приёмника ИК-     | 1          |
| 5   | сенсорный датчик                   |      | 25  | сигнала                  | _ <b>_</b> |
| 6   | Пассивный зуммер                   | 1    | 24  | Разъём питания типа DC   | 1          |
| 7   | Датчик температуры и               | 1    | 25  |                          | 1          |
| '   | влажности                          | -    | 25  |                          | -          |
| 8   | Датчик препятствий (ИК)            | 1    | 26  | Плата Arduino            | 1          |
| 9   | Серводвигатель SG90                | 3    | 27  | Расширительная плата I2С | 1          |
| 10  | Модуль матричной клавиатуры        | 1    | 28  | USB-кабель               | 1          |
| 11  | Датчик освещённости                | 1    | 20  | Аккумулятор 7.4 В        | 1          |
| 11  | (фоторезистор)                     | 1    | 29  | (заряжаемый)             | L 1        |

| 12 | Сегментный цифровой<br>индикатор            | 1  | 30 | Аккумулятор 3.7 В                                    | 2  |
|----|---------------------------------------------|----|----|------------------------------------------------------|----|
| 13 | Датчик дождя                                | 1  | 31 | Кабель PH2.0 3-pin, 25 см,<br>двухсторонний          | 5  |
| 14 | Кабель PH2.0 4-pin, 25 см,<br>двухсторонний | 9  | 32 | Кабель PH2.0 5-pin, 25 см,<br>двухсторонний          | 1  |
| 15 | Кабель PH2.0 3-pin → Dupont, 25<br>см       | 4  | 33 | Кабель PH2.0 5-pin → Dupont<br>(раздельные контакты) | 1  |
| 16 | Отвёртка крестовая                          | 1  | 34 | Гайка МЗ                                             | 50 |
| 17 | Винт M3×10                                  | 50 | 35 | Гайка М2                                             | 12 |
| 18 | Винт M2×10                                  | 12 |    |                                                      |    |

## 2 Этапы сборки модели «Умный дом»

1. Панель АО4 устанавливается слева от панели АО2. Убедитесь, что все шипы и пазы надёжно зафиксированы. См. рисунок 2-1-1.



Рисунок 2-1-1

2. Панель А05 служит правой боковой стенкой для панели А02. См. рисунок 2-1-2.



Рисунок 2-1-2

3. Панель АОЗ выполняет роль задней стенки корпуса. См. рисунок 2-1-3.



Рисунок 2-1-3

4. Собранные панели АО2, АО3, АО4, АО5 необходимо вставить в основание — панель АО1. Убедитесь, что конструкция вставлена плотно и ровно. См. рисунок 2-1-4.





Рисунок 2-1-4

5. Вставьте гайки МЗ в предусмотренные пазы. Панель ВО1 выполняет функцию балки крыши. См. рисунок 2-1-5.



Рисунок 2-1-5

6. Панель В02 устанавливается сверху и служит крышей модели. См. рисунок 2-1-6.



Рисунок 2-1-6

### 3 Монтаж внутренних электронных компонентов

### 1. Установка системы "умного освещения с датчиком движения"

Установите модуль инфракрасного датчика движения HC-SR505 над левой дверью на панели A02, используя винты M3×10. Модуль светофора закрепите над правой дверью на той же панели A02. Совместите плату BLE-UNO с расширительной платой Arduino (см. рисунок 3-1-3, плата расширения должна быть плотно вставлена). Установите полученный блок на основание A01, за исключением одного винта в правом верхнем углу платы.

См. рисунки 3-1-1, 3-1-2 и 3-1-3.



Рисунок 3-1-1

Рисунок 3-1-2



Рисунок 3-1-3

### 2. Установка дверного звонка

Установите сенсор касания слева от правой двери на панели A02, с помощью винтов M3×10. Пассивный зуммер установите справа от окна на панели A04.



См. рисунок 3-2-1.

Рисунок 3-2-1

#### 3. Установка системы «умный вентилятор с температурным управлением»

Снимите крышу (панель B02). Установите модуль вентилятора с мотором на балку (панель B01), используя винты M3×10. Установите датчик температуры и влажности слева от окна на панели A04. См. рисунок 3-3-1.



Рисунок 3-3-1

### 4. Установка гаражной двери

Диапазон поворота серво-рычага, как показано на рисунке, составляет от 0° до 180°. Когда серводвигатель установлен в положение 0°, необходимо отключить питание, чтобы зафиксировать направление вращения (см. рисунок 3-4-1), после чего выполнить установку на модель дома согласно следующим шагам.



Рисунок 3-4-1

1. Прикрепите серво-рычаг к ограждению СО1, используя комплектные саморезы (см. рисунок 3-4-2).



Рисунок 3-4-2

2. Закрепите серводвигатель винтами M2×8 рядом с правой дверью на панели A02 (см. рисунок 3-4-3).



Рисунок 3-4-3

3. Установите ограждение С01 на серводвигатель (см. рисунок 3-4-4).



Рисунок 3-4-4

4. Установите датчик препятствий (ИК) на панель АО5 (см. рисунок 3-4-5).



Рисунок 3-4-5

## 5. Установка системы "умный замок на дверь"

1. Установите серводвигатель в нулевое положение (0°) и убедитесь в правильной ориентации рычага.

2. Прикрепите рычаг к шлагбауму СО2 с помощью саморезов (рис. 3-5-1).



Рисунок 3-5-1

3. Закрепите серводвигатель с кронштейном СО4 винтами М2 (рис. 3-5-2).



Рисунок 3-5-2

4. Установите шлагбаум CO2 на серводвигатель и закрепите гайкой на кронштейне CO4 (рис. 3-5-3).



Рисунок 3-5-3

5. Установите гайку в корпус двери СО6, затем закрепите его на шлагбауме СО2 с помощью винтов M3×10 (рис. 3-5-4).



Рисунок 3-5-4

6. Установите весь узел (кронштейн + дверь) на левую дверь панели A02, закрепите серводвигатель винтами M3×10, затем установите матричную сенсорную клавиатуру рядом с дверью (рис. 3-5-5).







Рисунок 3-5-5

#### 6. Установка системы "автоматическое окно с управлением по освещённости"

1. Установите серводвигатель в начальное положение (0°), определите направление вращения серво-рычага..

2. Прикрепите горизонтальную створку окна СОЗ к серво-рычагу с помощью саморезов (рис. 3-6-1).



Рисунок 3-6-1

3. Закрепите серводвигатель и кронштейн СО5 винтами М2 (рис. 3-6-2).



Рисунок 3-6-2

4. Установите створку СОЗ на серводвигатель (рис. 3-6-3).



Рисунок 3-6-3

5. Закрепите гайки МЗ в окне СО7 и на кронштейне СО5, затем установите окно СО7 и створку СО3 на серводвигатель (рис. 3-6-4).



Рисунок 3-6-4

6. Установите серводвигатель на панель А04 в перевёрнутом положении (рис. 3-6-





Рисунок 3-6-5

- Установите фоторезистор (датчик освещения) на деревянную крышу ВО2 (рис. 3-
- 6-6).

7.



Рисунок 3-6-6



8. Закрепите цифровой индикатор (семисегментный дисплей) на панели АО2

винтами M2×8, разместив его с внутренней стороны через отверстие (рис. 3-6-7). Рисунок 3-6-7

**7. Установка датчика дождя (автоматическое закрытие окна при дожде)** Установите датчик дождя на крышу ВО2 (рис. 3-7-1).



Рисунок 3-7-1

#### 8. Установка системы обнаружения дыма и огня

Установите датчик дыма и датчик пламени по обе стороны окна панели A05, используя винты M3×8 (рис. 3-8-1).



Рисунок 3-8-1

#### 9. Установка системы контроля воздуха и электропитания

1. Датчик температуры и влажности был установлен на третьем этапе, теперь необходимо установить только LCD-дисплей. С помощью винтов M3×10 закрепить LCD-дисплей на панели A02. Установить аккумулятор в зарядный модуль и с помощью винтов M3×10 закрепить его на задней панели дома A03, как показано на рисунке 3-9-1.



Рисунок 3-9-1

2. Установите аккумулятор в зарядный модуль и с помощью винтов M3×10 закрепите его на задней панели дома A03, как показано на рисунке 3-9-2.



Рисунок 3-9-2

### 10. Установка системы дистанционного управления и платы расширения I2С

С помощью винтов M3×10 установите инфракрасный приёмник на балку B01, а также установите I2C-плату расширения на панель A01, как показано на рисунке 3-10-1.





Рисунок 3-10-1

- 4 Подключение системы «Умный дом»
- 4.1 Подключение датчиков

Таблица 1-1 — Список подключений компонентов

| Наименование модуля              | Пин подключения | Наименование модуля                       | Пин<br>подключения |
|----------------------------------|-----------------|-------------------------------------------|--------------------|
| Инфракрасный<br>приёмник         | 4 (P10)         | Сенсор касания                            | EO                 |
| Модуль вентилятора               | 3 (P9)          | Пассивный зуммер                          | 2 (P12)            |
| Серводвигатель входной<br>двери  | 12              | Датчик дыма                               | 7, A0 (P5)         |
| Серводвигатель<br>гаражной двери | E2              | Датчик температуры и<br>влажности (DHT11) | A2 (P2)            |
| Серводвигатель для окна          | E1              | Фоторезистор (датчик<br>освещённости)     | E4                 |
| Плата расширения I2C             | I2C             | Инфракрасный датчик<br>движения           | E3                 |
| ЖК-дисплей (LCD1602)             | 12C             | Светофор                                  | 9, 10, 11 (P15)    |
| Сегментный дисплей<br>VK16K33    | 12C             | Датчик дождя                              | A3                 |
| Матричная клавиатура             | 12C             | Инфракрасный датчик<br>препятствий        | 6, 5 (P8)          |
| Датчик пламени                   | 8, A1 (P6)      |                                           |                    |

Внимание: для выполнения данного курса требуется определённая подготовка в области программирования и работы с аппаратным обеспечением. Новичкам не рекомендуется выполнять данный проект без предварительной подготовки.

Перед установкой модулей на макет необходимо обязательно убедиться, что все модули исправны и работают корректно в связке.

Подключение датчика дождя: используйте трёхпиновый двухсторонний кабель PH2.0: G → GND,

 $G \rightarrow GND,$  $V \rightarrow VCC,$  $A \rightarrow A3.$ 



Общая схема подключения системы «Умный дом» показана на рисунке 4-1.



Рисунок 4-1 21

#### 4.2 Описание комплексных функций системы "Умный дом"

1. В первую очередь управление дверью, окном, мотором вентилятора и гаражной дверью осуществляется с помощью инфракрасного пульта дистанционного управления. (Кнопка 1 — открыть дверь, кнопка 2 — закрыть дверь, кнопка 3 — включить вентилятор, кнопка 5 — открыть гаражную дверь, кнопка 6 — закрыть гаражную дверь, кнопка 7 — открыть окно, кнопка 8 — закрыть окно.)

2. Далее управление дверью, окном, мотором вентилятора и гаражной дверью возможно с помощью мобильного приложения, как показано на рисунке 4-2.



#### Рисунок 4-2

3. Затем с помощью матричной клавиатуры вводится пароль системы "Умный дом" — 123, после чего в последовательный порт выводится сообщение "welcome to home", дверь открывается, далее система "Умный дом" выполняет функцию обнаружения человека: при обнаружении движения дверь открывается, а светофор переключается на зелёный сигнал.

4. При касании сенсорного модуля либо когда сенсор пламени обнаруживает сильное инфракрасное излучение (например, при поднесении зажигалки), загорается синий светодиод. В этот момент пассивный зуммер издаёт звуковой сигнал.

5. Датчик дыма и датчик температуры и влажности управляют работой вентилятора в зависимости от значения газа и температуры. (Диапазон значений регулируется, для каждого устройства индивидуально. Необходимо сначала вывести значения от двух датчиков в последовательный порт, затем с помощью зажигалки воспламенить и потушить огонь, а также изменить температуру и влажность окружающей среды, чтобы определить оптимальные чувствительные значения, после чего выполнить корректировку.)

6. Когда инфракрасный модуль обнаружения препятствий фиксирует наличие препятствия, загорается синий светодиод и открывается гаражная дверь. (Метод калибровки сервопривода: сначала установить сервопривод на 90°, затем закрепить дверь, окно и шлагбаум гаража.)

7. Фоторезистор (датчик освещённости) и датчик дождя управляют открытием и закрытием окна на основе внешних показаний. (Диапазон значений регулируется, для каждого устройства индивидуально. Необходимо сначала вывести значения от двух датчиков в последовательный порт, затем с помощью изменения освещённости и попадания воды определить оптимальные чувствительные значения, после чего выполнить корректировку.)

#### 4.3 Пример программы для системы "Умный дом"

После запуска Mixly выберите соответствующую плату и подключите правильный СОМпорт, затем, согласно изображению, выберите необходимые модули и соберите программу. После этого выполните загрузку программы на устройство.

*В архиве присутствует готовый проект программы Мixly:* 智能家居全屋联动程 序.mix



Программа Mixly

| 初 | 始化           |                                                    |  |
|---|--------------|----------------------------------------------------|--|
|   | Serial · 波特率 | 9600                                               |  |
|   | 初始化红外遥控器     | 接收引脚 4                                             |  |
|   | 初始化VK16K33数  | 陪管 myVK16K33 I2C地址为 0x70                           |  |
|   | I2C扩展板 myl2C | ExpansionBoard 初始化12C地址为 0x24                      |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E7 · 模式 输出模式 ·                 |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E0 使式 下拉输入模式                   |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E3 模式 下拉输入模式                   |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E1 模式 舵机模式(只支持引脚E1 ~ E2)       |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E2 · 模式 舵机模式(只支持引脚E1 ~ E2) ·   |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E4 · 模式 ADC模式 ·                |  |
|   | I2C扩展板 myI2C | ExpansionBoard 设置引脚 E5 · 模式 ADC模式 ·                |  |
|   | 初始化矩阵键盘V3    | (I2C) myMatrixKeyboardV3 设置I2C地址为 0x65             |  |
|   | 初始化 液晶显示屏    | 1602 · mylcd 设备地址 0x27 SCL 管脚 # A5 · SDA 管脚 # A4 · |  |
|   | 声明 全局变量 ·    | index 为整数 · 并赋值 ·                                  |  |
|   | 声明 全局变量,     | temp 为 小数 · 并赋值                                    |  |
|   | 声明 全局变量 ·    | hum 为 小数 · 并赋值                                     |  |
|   | 声明 全局变量 •    | light 为 双精度浮点数 - 并赋值                               |  |
|   | 声明 全局变量      | rain 为整数 并赋值                                       |  |
|   | 声明 全局变量      | mq4 为整数 并赋值                                        |  |
|   | 声明 全局变量 ·    | key 为字符串 / 并赋值 🕨                                   |  |
|   | 声明 全局变量 ·    | passwd 为 字符串 并赋值 " 123 "                           |  |
|   | 声明 全局变量 •    | keyStr 为 字符串 · 并赋值 ·                               |  |
|   | 声明 全局变量 •    | flag 为 整数 · 并赋值 0                                  |  |
|   | 声明 全局变量 •    | item 为 字符串 · 并赋值 · " "                             |  |
|   | VK16K33数码管 1 | nyVK16K33 设置亮度为 15                                 |  |







| <ul> <li>手机控制</li> </ul>                                        |  |
|-----------------------------------------------------------------|--|
| Serial * 100 自动换行 * 「 手机控制 」                                    |  |
| 重复 满足条件 Serial 有数据可读吗?                                          |  |
| 执行 item 赋值为 💿 连接字符串 item + 韩ASCII字符 Serial read -               |  |
| Serial 打印 自动换行 item                                             |  |
| 迎时 毫秒 - 2                                                       |  |
|                                                                 |  |
| ■ 如果 item 等于 on                                                 |  |
| 执行 数字输出 管脚 # 9 设为 章                                             |  |
| 否则如果 item 等于 off ···                                            |  |
|                                                                 |  |
|                                                                 |  |
| ② 如果 item 等于 openfan                                            |  |
| 執行 数字输出 管護 # 13 225 言                                           |  |
|                                                                 |  |
| ◎ 如果 titem 开始于 closefan                                         |  |
| 执行 数字输出 管膜 # 1 3 设为 1 低                                         |  |
|                                                                 |  |
| 243 item #T opendoor                                            |  |
| 执行 模式 Serve ·                                                   |  |
|                                                                 |  |
| 延時((振動) 0                                                       |  |
| 否则如果 item 善于 closedoor                                          |  |
|                                                                 |  |
| 彩机 佳期 # 12                                                      |  |
| 角度 (0~180) · 180                                                |  |
| 延时(1000) 0                                                      |  |
|                                                                 |  |
| #行                                                              |  |
| 12C扩展版 myl2CExpansionBoard 设计引脚 E1 · 设计规制模式的规制角度(0-180)为 90     |  |
| 否则如果 item 等于 closewindow                                        |  |
| 执行 I2C扩展板 myI2CExpansionBoard 设置引牌 E1 。 设置於机模式的舵机角度(0-180)为 180 |  |
|                                                                 |  |
| opengarage                                                      |  |
| 341 I2C扩展板 myI2CExpansionBoard 设置引牌 E2 · 设置轮机模式的轮机角度(0-180)为 90 |  |
| 否则如果 item 等于 closegarage                                        |  |
| 执行 I2C扩展板 myI2CExpansionBoard 设于引脚 E2 · 设于统机模式的舵机角度(0-180)为 0   |  |
|                                                                 |  |
|                                                                 |  |

| 执行 欄放声音(无定时器) 皆翻 # 2 5 NOTE_C3 持续时间 1000 室抄                         |                       |
|---------------------------------------------------------------------|-----------------------|
| <b>否则 结束声音(无定时器) 管脚 # 2</b>                                         | 火焰传感器数字脚连8.当识别到火焰时输出低 |
| 批提模块接(2C扩展板E0.触接模块检测                                                | 电平                    |
| 111(4 % MB/2) ● 控制 # A0 到触摸 輸出電电平                                   |                       |
| Senal 目动现行 mq4<br>temp 赋值为 ① DHT11 - 曾御 # A2 · 获取温度                 |                       |
| @ 如果 @ temp > 30 或 mo4 > 20                                         |                       |
|                                                                     |                       |
| 200 気子細工 自時 * 3 収入 同                                                |                       |
| <b>否则</b> 数字输出管脚# 3 设为 低                                            | 红外避障模块数字脚连6,当前方有障碍物时输 |
|                                                                     | 出低电平                  |
|                                                                     |                       |
| 241 0 I2Ctr展板 myI2CExpansionBoard 设置引脚 E2 · 设置統別模式的統別角度(0-180)为 90  |                       |
| 合則 12C扩展板 my/2CExpansionBoard 设置引脚 E2 · 设置舵机模式的舵机角度(0-180)为 0       |                       |
| light 國債为 9 12C扩展版 my12CExcansionBoard 获取引牌 E4 - 的楼拟值               |                       |
| VK16K33数码管 myVK16K33 显示数字 light                                     |                       |
| rain 顾信为 ⑦ 搅灰细入 管脚 # A3                                             | 雨滴传感器 A35 脚获取模拟值      |
| 0 0 如果 [abt an 100] 目: [min and [an]                                |                       |
|                                                                     |                       |
| 2011 10 12C扩展板 myl2CExpansionBoard 设置引牌 E1 · 设置統制模式的統制角度(0-180)为 90 |                       |
| 音频如果 [light] > 200 或 [rain] < 400                                   |                       |
| 执行 12C扩展板 my12CExpansionBoard 设置引脚 E1 · 设置的机构式功能机角度(0-180)为 180     |                       |
| hum 耐荷为 9 DHT11 - 告謝 # 42 - 英取得度 -                                  |                       |
| 法最显示屏 mylcd 打印第1行 temp: 连接 temp                                     |                       |
| 打印莲2行 bum 连接 bum                                                    |                       |
|                                                                     |                       |
|                                                                     |                       |
| 执行 红外运控                                                             |                       |
| 执行 密码版 🚽                                                            |                       |
| 执行自动控制                                                              |                       |
| 加た 手机20%                                                            |                       |
| AND TABLES                                                          |                       |
|                                                                     |                       |

Двойным щелчком мыши откройте программу, как показано на рисунке, выберите плату Arduino Uno и подключите правильный COM-порт. Это исходный код программы для Arduino, который открывается, редактируется и загружается в плату через среду Arduino IDE.

| '能家居基础课程 ⇒ 16.智能家居全屋联动 ⇒ | 16.智能家居全屋联动示例 → 智能家居全屋             | 【联动程序 → Arduino IDE | 示例程序 → SmartHome | v Ö ∏a | риск в: SmartHome |  |
|--------------------------|------------------------------------|---------------------|------------------|--------|-------------------|--|
| ^ Имя                    | <ul> <li>Дата изменения</li> </ul> | Тип                 | Размер           |        |                   |  |
| gpio_expansion_k         | oard.cpp 20.03.2025 10:02          | Файл "СРР"          | 4 КБ             |        |                   |  |
| gpio_expansion_k         | oard.h 20.03.2025 10:02            | Файл "Н"            | 4 КБ             |        |                   |  |
| IR_remote.cpp            | 20.03.2025 10:02                   | Файл "СРР"          | 14 KE            |        |                   |  |
| IR_remote.h              | 20.03.2025 10:02                   | Файл "Н"            | 4 КБ             |        |                   |  |
| Keymap.cpp               | 20.03.2025 10:02                   | Файл "СРР"          | 1 КБ             |        |                   |  |
| Keymap.h                 | 20.03.2025 10:02                   | Файл "Н"            | 2 КБ             |        |                   |  |
| LiquidCrystal_I2C        | cpp 20.03.2025 10:02               | Файл "СРР"          | 9 КБ             |        |                   |  |
| LiquidCrystal_I2C        | h 20.03.2025 10:02                 | Файл "Н"            | 4 КБ             |        |                   |  |
| matrix_keyboard_         | v3.cpp 20.03.2025 10:02            | Файл "СРР"          | 3 КБ             |        |                   |  |
| matrix_keyboard_         | v3.h 20.03.2025 10:02              | Файл "Н"            | 3 КБ             |        |                   |  |
| NewTone.cpp              | 20.03.2025 10:02                   | Файл "СРР"          | 1 K6             |        |                   |  |
| NewTone.h                | 20.03.2025 10:02                   | Файл "Н"            | 1 КБ             |        |                   |  |
| pitches.h                | 20.02.2025 10:02                   | Файл "Н"            | 3 КБ             |        |                   |  |
| Servo.cpp                | 20.03.2025 10:02                   | Файл "СРР"          | 11 КБ            |        |                   |  |
| Servo.h                  | 20.03.2025 10:02                   | Файл "Н"            | 6 KB             |        |                   |  |
| . SmartHome              | 20.03.2025 10:02                   | Файл "INO"          | 8 KE             |        |                   |  |
| V Sounds.h               | 20.03.2025 10:02                   | Файл "Н"            | 5 КБ             |        |                   |  |
| КБ                       |                                    |                     |                  |        |                   |  |

#### Arduino IDE

#include "IR\_remote.h" #include "keymap.h" IRremote ir(4); #include "gpio\_expansion\_board.h" GpioExpansionBoard myI2CExpansionBoard(0x24); #include "matrix\_keyboard.h" #include <Wire.h> #include "LiquidCrystal I2C.h" #include <Servo.h> #include "NewTone.h" #include "DHT.h" LiquidCrystal\_I2C mylcd(0x27,16,2); volatile int index; volatile float temp; volatile float hum; volatile double light; volatile int rain; volatile int mq4; String key; String passwd; String keyStr; volatile int flag; Servo servo 3; String item; DHT dhtA2(A2, 11); #include "digit\_display.h" DigitDisplay myVK16K33(0x70); MatrixKeyboard myMatrixKeyboardV2(0x50); void irRemoteControl() { if (ir.getIrKey(ir.getCode(),2) == EM\_IR\_KEYCODE\_1) { Serial.println("1"); // 感应到人体,大门舵机开 servo\_3.write(90); delay(1000); } else if (ir.getlrKey(ir.getCode(),2) == EM\_IR\_KEYCODE\_2) { Serial.println("2"); // 感应到人体,大门舵机开 servo\_3.write(180); delay(1000); } else if (ir.getIrKey(ir.getCode(),2) == EM\_IR\_KEYCODE\_3) {

```
Serial.println("3");
                      digitalWrite(5,HIGH);
                      digitalWrite(6,LOW);
                      delay(1000);
              } else if (ir.getIrKey(ir.getCode(),2) == EM_IR_KEYCODE_4) {
                      Serial.println("4");
                      digitalWrite(5,LOW);
                      digitalWrite(6,LOW);
                      delay(1000);
              } else if (ir.getIrKey(ir.getCode(),2) == EM IR KEYCODE 5) {
                      Serial.println("5");
                      // 车库舵机接I2C 扩展板E2 引脚
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E2,90);
       delay(1000);
               } else if (ir.getIrKey(ir.getCode(),2) == EM_IR_KEYCODE_6) {
               Serial.println("6");
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E2 ,0);
       delay(1000);
               } else if (ir.getIrKey(ir.getCode(),2) == EM_IR_KEYCODE_7) {
               Serial.println("7");
               // 窗户舵机接I2C 扩展板E1 引脚
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E1,90);
       delay(1000);
       } else if (ir.getIrKey(ir.getCode(),2) == EM_IR_KEYCODE_8) {
       Serial.println("8");
// 窗户舵机接I2C 扩展板E1 引脚
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E1,180);
       delay(1000);
       }
void humbodySensorControl() {
       // 人体感应模块感应到亮灯
(myI2CExpansionBoard.GetGpioLevel(GpioExpansionBoard::GpioPin::kGpioPin
E3) == 1) {
       // 交通信号灯接D9,交通信号灯亮
       digitalWrite(9,HIGH);
       // 感应到人体,大门舵机开
       servo_3.write(90);
       delay(1000);
       } else {
       // 交通信号灯灭
       digitalWrite(9,LOW);
       servo_3.write(180);
       delay(1000);
       }
}
void setup(){
       Serial.begin(9600);
       ir.begin();
       myVK16K33.Setup();
       myMatrixKeyboardV2.Setup();
       mylcd.init();
```

```
mylcd.backlight();
       index = 0:
       temp = 0;
       hum = 0;
       light = 0;
       rain = 0;
       mq4 = 0;
       key = "";
       password = "123";
       keyStr = "";
       flag = 0;
myI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE7,
GpioExpansionBoard::GpioMode::kOutput);
myI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE0,
GpioExpansionBoard: GpioMode::kInputPullDown);
myI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE3,
GpioExpansionBoard::GpioMode::kInputPullDown);
myI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE1,
GpioExpansionBoard::GpioMode::kPwm);
myl2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE2
, GpioExpansionBoard::GpioMode::kPwm);
mvI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE4,
GpioExpansionBoard: GpioMode::kAdc);
myI2CExpansionBoard.SetGpioMode(GpioExpansionBoard::GpioPin::kGpioPinE5,
GpioExpansionBoard::GpioMode::kAdc);
myVK16K33.SetBrightness(15);
servo_3.attach(3);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
item = "";
pinMode(8, INPUT);
pinMode(2, OUTPUT);
dhtA2.begin();
pinMode(7, INPUT);
pinMode(A3, INPUT);
pinMode(9, OUTPUT);
void loop(){
       irRemoteControl();
       key = myMatrixKeyboardV2.GetTouchedKey();
       if (key != "") {
               Serial.println(String("key: ") + String(key));
               delay(500);
               if (key == "#") {
                       keyStr = "";
       } else {
               keyStr = String(keyStr) + String(key);
               mylcd.setCursor(1-1, 1-1);
               mylcd.print(keyStr);
               index = index + 1;
               Serial.println(String("Hello: ") + String(index));
       if (index == 3 \&\& flag == 0) {
       if (keyStr == password) {
       Serial.println("hello");
       flag = 1;
       keyStr = "";
```

```
32
```

ł

mylcd.clear();

```
index = 0:
      kevStr = "":
      }
    }
}
      // 第一次开门需要输入密码, 才能通过人体感应开门
      if (flag) {
             humbodySensorControl();
      }
      // 触摸模块接I2C 扩展板E0,触摸模块检测到触摸输出高电平
      // 火焰传感器数字脚连D8,当识别到火焰时输出低电平
if(myl2CExpansionBoard.GetGpioLevel(GpioExpansionBoard::GpioPin::kGpioP inE0) == 1 || digitalRead(8)
== 0) {
      NewTone(2,131,1000):
} else {
      NewNoTone(2);
}
      // 烟雾传感器接13,获取数字值, 当检测到有害气体风扇转动
      mq4= digitalRead(13);
      Serial.println(mq4);
      delay(1000);
      // DHT11 接A2, DHT11 获取环境温度
      temp = dhtA2.readTemperature();
      // 当环境温度大于30, 风扇转动
      if (temp > 30 || mq4 == 0) \{
             digitalWrite(5,HIGH);
             digitalWrite(6,LOW);
      } else {
             digitalWrite(5,LOW);
             digitalWrite(6,LOW);
// 红外避障模块数字脚连D13,当前方有障碍物时输出低电平
if (digitalRead(7) == 0) {
      // 车库舵机接I2C 扩展板E2 引脚
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin E2,90);
}// 红外避障模块数字脚连D7,当前方有障碍物时输出低电平
if (digitalRead(7) == 1)
{ myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioP inE2,0);
      // 光敏模块接I2C 扩展板E4 引脚可以通过调节判断的值调节窗户的开关
      light = myl2CExpansionBoard.GetGpioAdcValue(GpioExpansionBoard::GpioPin::kGpioP inE4);
      myVK16K33.ShowNumber(double(light), 3);
      // 雨滴传感器A3 引脚获取模拟值
      rain = analogRead(A3);
      Serial.println(rain);
      delay(1000);
      // 当光线比较暗又没下雨的时候, 开窗, 否则, 关窗
      if (light < 100 && rain > 400) {
             // 窗户舵机接I2C 扩展板E1 引脚
myl2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin E1,90);
      } else if (light > 100 || rain < 400) {
myl2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin E1,180);
      }
      // DHT11 获取湿度
      hum = dhtA2.readHumidity();
      // LCD1602 第一行显示温度, 第二行显示湿度
                                           33
```

```
mylcd.setCursor(0, 0);
        mylcd.print(String("temp: ") + String(temp));
        mylcd.setCursor(0, 1);
        mylcd.print(String("hum: ") + String(hum));
        while (Serial.available() > 0) {
                item = String(item) + String(char(Serial.read()));
                Serial.println(item);
                delay(2);
        }
        if (String(item).equals(String("on"))) {
                digitalWrite(9,HIGH);
                delay(1000);
        } else if (String(item).equals(String("off"))) {
                digitalWrite(9,LOW);
        }
        if (String(item).equals(String("openfan"))) {
                digitalWrite(5,HIGH);
                digitalWrite(6,LOW);
                delay(1000);
        if (String(item).startsWith(String("closefan"))) {
                digitalWrite(5,LOW);
                digitalWrite(6,LOW);
        if (String(item).equals(String("opendoor"))) {
                servo_3.write(90);
                delay(1000);
        } else if (String(item).equals(String("closedoor"))) {
                servo_3.write(180);
                delay(1000);
if (String(item).equals(String("openwindow"))) {
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E1,90);
        delay(1000);
        } else if (String(item).equals(String("closewindow"))) {
myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin
E1,180);
        delay(1000);
if (String(item).equals(String("opengarage")))
{ myI2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpio
PinE2 ,90);
                delay(1000);
        } else if (String(item).equals(String("closegarage"))) {
```

myl2CExpansionBoard.SetServoAngle(GpioExpansionBoard::GpioPin::kGpioPin E2,0);

```
delay(1000);
```

```
}i
```

tem = ""; }