
Лабораторный настольный мультиметр UNI-T UT8803N

CALLE 6

Инструкция по эксплуатации

CHILEBOINC

Содержание

1 Экран дисплея	
 2 Функции	
, . 3 Конструкция	
4 Инструкции по эксплуатации	

1 Экран дисплея

_						
	1	С	Емкость	11	hFE	Коэффициент усиления тока транзистора
ſ	2	AUTO	Автодиапазон	12	0 . 0	Полярность диода и тиристора
	3	RANGE	Ручной диапазон	13	SCR +11) 🙀	Тиристор/прозвонка/
Ī	4	MAX	Максимальное значение	14	Показание	
	5	MIN	Минимальное значение	15	Единица измерения	.10
	6	HOLD	Удержание данных	16	-limit	Сегментный индикатор
	7	REL∆	Относительное значение	17	4	Высокое напряжение
	8	SER	Последовательно	18	L	Индуктивность
1	9	PAL	Параллельно	19	D O B	Измерение коэффициента потерь (D), добротности (Q) и эквивалентного
	10	USB	Подключение по USB	1 19	DQR	сопротивления (R) индуктивности или ёмкости
ſ	20.	-	Отрицательное значение			
-						

15. Единицы измерения:

Переменный ток

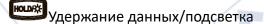
Постоянный ток

AC

DC

21.

22.


mV、V	Напряжение
μA、mA、A	Ток
Ω, kΩ, ΜΩ	Сопротивление
nF、μF、mF	Ёмкость
μH、mH、H	Индуктивность
Hz、kHz、MHz	Частота
β	Усиление тиристора
°C/°F	Температура

2 Функции

Положение	Входной терминал	Функции (режимы измерения)	
V 	V ←→ COM	Постоянное напряжение (DC voltage)	
v~	V ←→ COM Переменное напряжение (AC voltage)		
Ω	V ←→ COM Сопротивление		
+1))	V ←→ COM Прозвонка (контроль целостности)		
Hz %	V ←→ COM	Частота/коэффициент заполнения (duty ratio)	
С	V ←→ COM ËMKOCTЬ		
L	V ←→ COM	Индуктивность	
D	V ←→ COM	Тангенс угла диэлектрических потерь (ёмкости)	
Q V ←→ COM		Коэффициент добротности (индуктивности)	
R $V \longleftrightarrow COM$		Эквивалентное сопротивление	
μA mA 	μA mA ←→ COM	Постоянный ток (DC current)	
A	A ←→COM	Постоянный ток (DC current)	
μA mA ~ μA mA ←→ COM		Переменный ток (AC current)	
A~ A ←→COM		Переменный ток (AC current)	
* _	V-COM Многофункциональное гнездо (UT-S03A)	Диод (LED)	
hFE	Многофункциональное гнездо (UT-S03A)	Коэффициент усиления тока транзистора	
SCR	Многофункциональное гнездо (UT-S03A)	Измерение тиристора	
°C/°F	Многофункциональное гнездо (UT-S03A)	Температура	

3 Конструкция

- 1. Переключатель питания
- 2. Экран дисплея
- 3. Гнездо 10 А
- 4. Гнездо μA/mA
- 5. Гнездо СОМ
- 6. Многофункциональное гнездо для измерения напряжения, сопротивления, индуктивности, ёмкости, частоты, проверки цепи на целостность, диодов и коэффициента заполнения (duty ratio)
- 7. Кнопки:

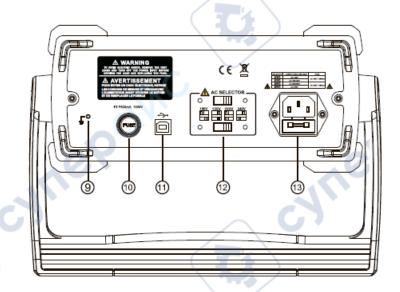
^{SELECT} Переключение функции


Переключение диапазона

Максимум/минимум

Относительное значение/подключение USB

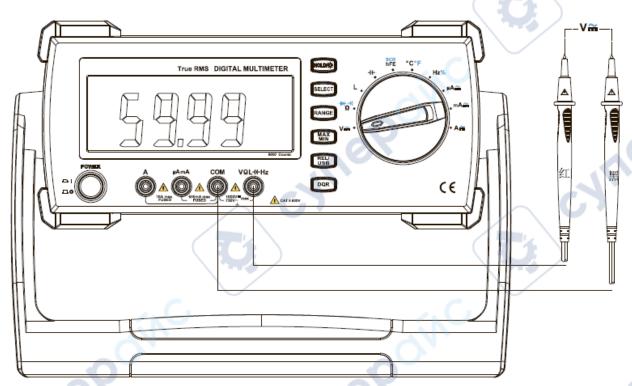
DOR Измерение коэффициента потерь, добротности и эквивалентного сопротивления


8. Переключатель режимов измерений (функциональный диск)

RANGE

REL/ USB

- 9. Заземление
- Предохранитель (F2 600 мА)
- **11**. Порт USB
- 12. Переключатель измерения переменного напряжения (АС)
- 13. Разъём подключения питания


Обозначения на приборе

Питание включено (Power on)
Питание выключено (Power off)
Постоянный ток
Переменный ток
Заземляющий вывод
Осторожно, возможно поражение электрическим током
Предупреждение или осторожно. Для безопасной эксплуатации и обслуживания данного прибора соблюдайте все предупреждения и инструкции, изложенные в данном руководстве.
USB-порт
Не выбрасывайте оборудование и его принадлежности вместе с бытовыми отходами. Изделия должны быть утилизированы надлежащим образом в соответствии с местными нормами
Соответствует директивам Европейского союза
Применимо к испытательным и измерительным цепям, подключённым непосредственно к точкам потребления (штепсельные розетки и аналогичные точки) низковольтной сети электроснабжения.

4 Инструкции по эксплуатации

Примечание: Выберите соответствующий входной терминал. Поверните функциональный переключатель в нужное положение.

- 1. Измерение постоянного напряжения (DC)
- а) Подключите красный измерительный щуп к гнезду V, а чёрный к гнезду COM.
- b) Поверните переключатель в положение **V** → , нажмите кнопку для входа в режим измерения постоянного напряжения (рисунок 1). Подключите щупы параллельно нагрузке.
 - с) На дисплее будет отображено измеренное значение.
- d) Нажмите кнопку для ручного переключения диапазона. Нажмите для ручного переключения диапазона.

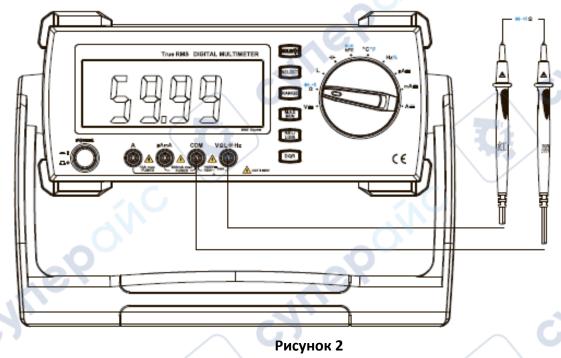
Рисунок 1

Л Примечание:

- Не подавайте напряжение свыше 1000 В, так как это может привести к поражению электрическим током.
 - Соблюдайте осторожность при измерении высокого напряжения.
 - После каждого измерения отсоединяйте измерительные провода и испытуемую цепь.

2. Измерение переменного напряжения (АС)

- а) Подключите красный измерительный щуп к гнезду V, а чёрный в гнездо COM.
- b) Поверните переключатель в положение $\mathbf{V} = \mathbf{n}$, нажмите кнопку для входа в режим измерения переменного напряжения (рисунок 1). Подключите щупы параллельно нагрузке.
- c) На дисплее отображается измеренное значение. (Истинное среднеквадратичное значение синусоидального сигнала, True RMS.)
- d) Нажмите кнопку для ручного переключения диапазона. Нажмите для перехода в диапазон мВ (милливольты).

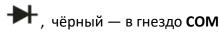

№ Примечание:

- Не подавайте напряжение свыше 750 В, так как это может привести к поражению электрическим током.
 - Соблюдайте осторожность при измерении высокого напряжения.
- После каждого измерения отсоединяйте измерительные провода и испытуемую цепь.

3. Измерение сопротивления

а) Подключите красный измерительный провод к гнезду Ω чёрный — в гнездо **СОМ**.

- b) Поверните переключатель в положение Ω , нажмите кнопку режим измерения сопротивления (рисунок 2). Подключите щупы параллельно нагрузке.
 - с) На дисплее отображается измеренное значение.
 - d) Нажмите кнопку ^{ѕецест} для ручного переключения диапазона.



∆ Примечание:

- Если резистор имеет обрыв или значение вне диапазона, на экране отображается «OL».
- Перед измерением сопротивления отключите питание цепи и полностью разрядите все конденсаторы.
- При измерении малых сопротивлений измерительные провода вносят погрешность 0.1Ω - 0.2Ω Для точного измерения закоротите щупы и используйте функцию REL.
- Если сопротивление при закороченных щупах превышает 0.5Ω , проверьте, не ослаблены ли соединения и не повреждены ли щупы.
- При измерении высоких сопротивлений свыше 1 МО, нормальна задержка установления показаний в течение нескольких секунд. Для стабилизации показаний можно использовать короткий измерительный провод.
- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
- После каждого измерения отсоединяйте измерительные провода и испытуемую цепь.

4. Измерение диодов Метод 1:

а) Вставьте красный измерительный провод в гнездо , чёрный — в гнездо СОМ.

b) Поверните переключатель в положение Ω'' , нажмите кнопку для входа в режим измерения диодов (рисунок 2). Подключите щупы параллельно нагрузке.

Когда появляется — положительный полюс: красный щуп; отрицательный полюс: чёрный щуп.

Когда появляется — положительный полюс: чёрный щуп; отрицательный полюс: красный щуп.

с) Отображается прямое падение напряжения на p-n-переходе.

Метод 2:

- а) Вставьте (многофункциональное гнездо) в соответствующее гнездо (рисунок 3)
- b) Вставьте выводы диода или светодиода в гнездо, обозначенное **DIODE**.

Когда появляется — положительный полюс: правая сторона гнезда; отрицательный полюс: левая сторона гнезда.

Когда появляется — положительный полюс: левая сторона гнезда; отрицательный полюс: правая сторона гнезда.

с) Отображается прямое падение напряжения на p-n-переходе.

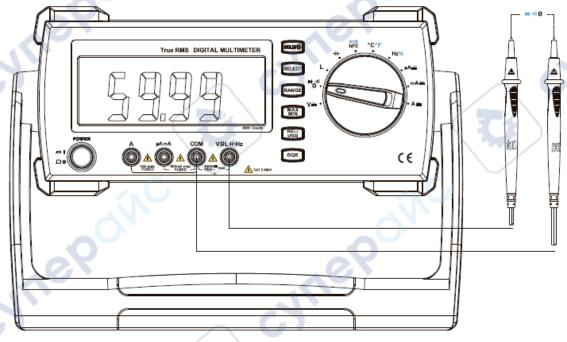


Рисунок 3

5.Прозвонка (контроль целостности цепи)

- а) Вставьте красный измерительный провод в гнездо Ω , чёрный в **СОМ**.
- b) Поверните переключатель в положение Ω , нажмите для входа в режим прозвонки. Подключите щупы параллельно резистору параллельно.

Если цепь проводит ток — сопротивление < $10~\Omega$, звуковой сигнал подаётся непрерывно. Если цепь разомкнута — сопротивление > $30~\Omega$, звуковой сигнал не подаётся.

с) На дисплее отображается измеренное значение.

∆ Примечание:

- Перед измерением отключите все источники питания и полностью разрядите все конденсаторы.
- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
 - После измерения отсоедините измерительные провода от цепи.

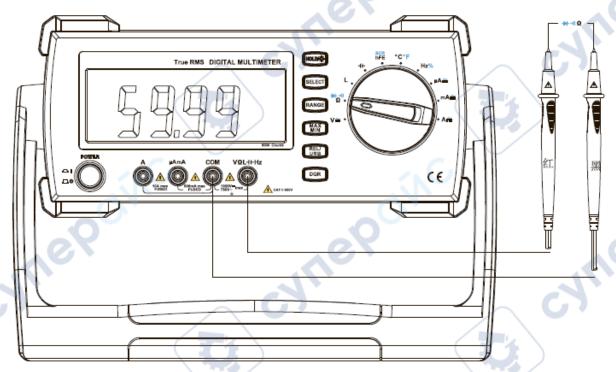
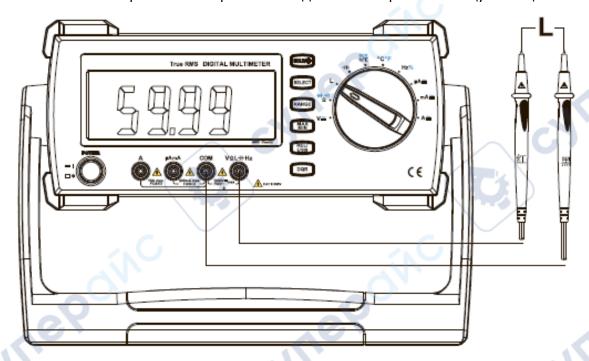


Рисунок 4

6. Измерение индуктивности

- а) Вставьте красный измерительный провод в гнездо L, чёрный в **СОМ**.
- b) Поверните переключатель в положение **L**, подключите щупы параллельно индуктивности.
 - с) На дисплее отображается измеренное значение.
- d) Нажмите для переключения функций Q/R; длительное нажатие возвращает в режим измерения индуктивности.

№ Примечание:


- Перед измерением отключите все источники питания и полностью разрядите все конденсаторы.
 - Для повышения точности обнулите показание перед измерением.

⚠ Метод:

При закороченных щупах и частоте 10 кГц нажмите REL для установки показания на ноль.

- Для индуктивностей свыше 1 Гн время установления показаний увеличивается.
- Значения тангенса потерь (D) и коэффициента добротности (Q) приводятся для справки.

- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
 - После завершения измерения отсоедините измерительные щупы от цепи.

Рисунок 5

7. Измерение ёмкости

- а) Вставьте красный измерительный провод в гнездо С, чёрный в СОМ.
- b) Поверните переключатель в положение **+** подключите щупы параллельно конденсатору.
 - с) На дисплее отображается измеренное значение.
- d) Нажмите для переключения функций Q/R; длительное нажатие возвращает в режим измерения ёмкости.

∆ Примечание:

- Если в измеряемой цепи короткое замыкание или ёмкость вне диапазона, отображается «OL».
- Возможны десятки остаточных единиц из-за собственной ёмкости перед измерением выполните обнуление.

№ Метод:

При разомкнутых щупах и частоте 1 кГц нажмите REL для установки нуля.

- Для конденсаторов свыше 600 мкФ время установления показаний увеличивается.
- Перед измерением отключите все источники питания и полностью разрядите конденсаторы. Особое внимание конденсаторам с высоким напряжением.
- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
 - После измерения отсоедините измерительные провода от цепи.

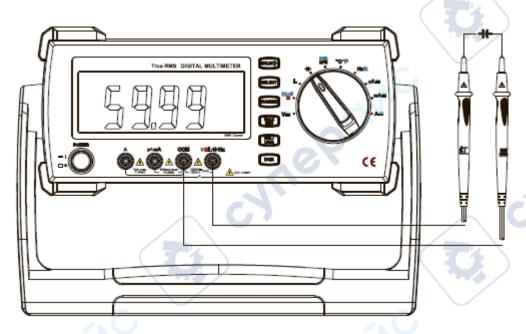


Рисунок 6

8. Измерение коэффициента усиления тока транзистора

- а) Вставьте модуль (многофункциональное гнездо) в соответствующее гнездо.
- b) Поверните переключатель в положение hfe, нажмите для перехода в режим измерения усиления постоянного напряжения
- с) Вставьте транзистор в гнездо. Выводы триода должны соответствовать клеммам гнезда:
 - В (база), Е (эмиттер), С (коллектор)
 - d) На дисплее отображается измеренное значение.

№ Примечание:

- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
- Для точности корректно устанавливайте транзистор в многофункциональное гнездо. Соблюдайте полярность.

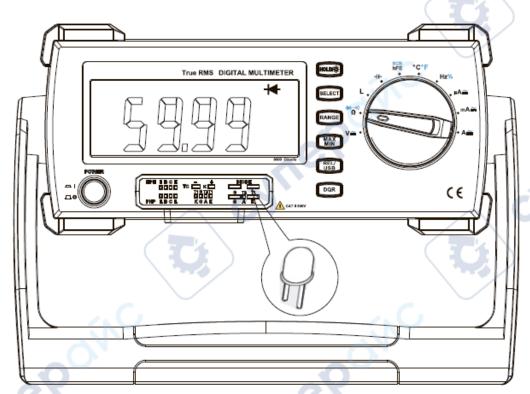


Рисунок 7

9. Измерение тиристора (SCR)

- а) Вставьте модуль (многофункциональное гнездо) в прибор.
- b) Поверните переключатель в положение **SCR** ; нажмите для перехода в режим измерения тиристора.
 - с) Вставьте SCR в гнездо корректно: G (управляющий электрод (Gate)), A (анод), K (катод).
 - d) На дисплее будут отображаться результаты согласно таблице ниже:

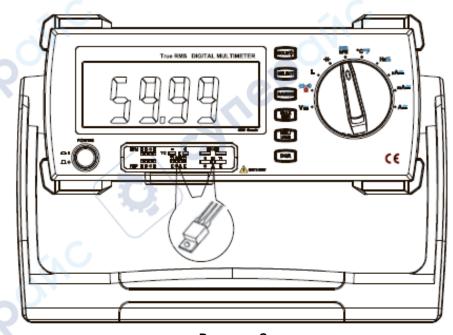


Рисунок 8

Таблица отображений результатов измерения тиристора

Отображение на дисплее	Символ полярности тиристора (SCR)	Состояние	Полярность тиристора (SCR)
0.1 V ~ 2 V	⊙ # ⊙	Норма	Двусторонний
0.1 V ~ 2 V	→	Норма	Односторонний
ERR		Плохой контакт	Неизвестно
OL		Не подключено / плохой контакт	Неизвестно

№ Примечание:

- Перед измерением отключите все источники питания и полностью разрядите все конденсаторы. Особое внимание конденсаторам с высоким напряжением.
- Не подавайте напряжение свыше 30 В (RMS синусоиды, пиковое 42 В) или 60 В DC.
 - После измерения отсоедините измерительные провода от цепи.

10. Измерение температуры

- а) Вставьте (многофункциональное гнездо) в прибор.
- b) Поверните переключатель в положение °C/°F, нажмите кнопку для переключения единиц температуры. Если термопара не подключена, отображается OL.
- с) Подключите термопару к гнезду, соблюдая полярность (при обратной полярности показание будет отрицательным).

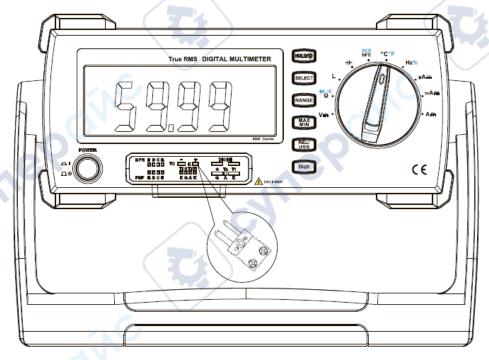


Рисунок 9

11. Измерение частоты

а) Вставьте красный измерительный провод в гнездо **Hz%**, чёрный — в **COM**.

- b) Поверните переключатель в положение Hz%, нажмите для перехода к измерению частоты.
 - с) Подключите щупы параллельно источнику сигнала.
 - d) На дисплее отображается измеренное значение.

№ Примечание:

- Не подавайте свыше 30 В АС возможна опасность поражения электрическим током.
 - После измерения отсоедините измерительные провода от цепи.

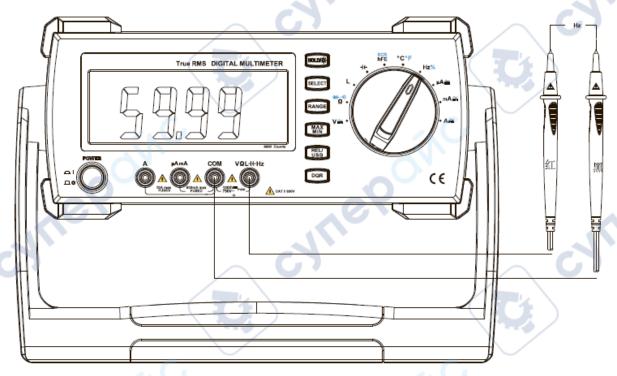


Рисунок 10

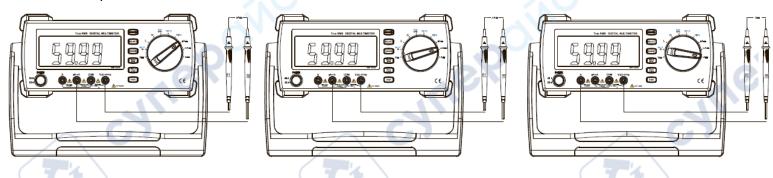
12. Измерение коэффициента заполнения (duty ratio)

- а) Вставьте красный измерительный провод в гнездо **Hz%**, чёрный в **СОМ**.
- b) Поверните переключатель в положение Hz%, нажмите для входа в режим измерения коэффициента заполнения.
 - с) Подключите щупы параллельно источнику сигнала.
 - d)) На дисплее отображается измеренное значение.

∆ Примечание:

- Не подавайте свыше 36 В АС возможна опасность поражения электрическим током.
 - После измерения отсоедините измерительные провода от цепи.
- Функция измерения коэффициента заполнения у UT8803 предназначена только для справочных измерений.

13. Измерение тока


а) Вставьте красный измерительный провод в гнездо μA , mA или A, чёрный — в COM.

- b) Поверните переключатель в положение µА≅ мА≅ А≅, нажмите для выбора измерения AC/DC.
 - с) Подключите щупы последовательно с источником сигнала.
- d) На дисплее отображается измеренное значение. При измерении переменного тока отображается истинное среднеквадратичное значение синусоиды.

∆ Примечание:

Перед измерением отключите питание измеряемой цепи и полностью разрядите все высоковольтные конденсаторы.

- Если значение тока неизвестно, выберите максимальный диапазон и затем понижайте его.
 - Не подключайте измерительные провода параллельно цепи.
 - После измерения отсоедините измерительные провода от цепи.
- При измерении тока около 10 А время измерения должно быть менее 30 с с интервалом более 15 мин, иначе возможна опасность поражения электрическим током или травмы.

cyriepoi