

Инструкция по эксплуатации

CHUERON

cyriePoinc

CALLE

Содержание

1 Краткое руководство	
1.1 Передняя панель	
1.2 Задняя панель	
1.3 Клавиши	
1.4 Основные операции	
1.5 Страница LCR	6
2 Работа с основными функциями	
2.1 Условия и параметры измерения	
2.1.1 Функция	
2.1.2 Уровень	8
2.1.3 Постоянное смещение (BIAS)	
2.1.4 Частота	
2.1.5 Диапазон	<u> </u>
2.1.6 Выходное сопротивление	
2.1.7 Скорость	9
2.2 Режим DCR (сопротивление постоянному току)	10
2.3 Режим электролитического конденсатора	10
2.4 Функция Δ	10
2.5 Функция удержания данных	
2.6 Функция записи данных	
2.7 Калибровка	11
2.7.1 Калибровка разомкнутой цепи	12
2.7.2 Калибровка короткозамкнутой цепи	12
3 Системные настройки	13
3.1 Страница SYSTEM SET	13
3.2 Системные параметры	13
3.2.1 Язык	13
3.2.2 Яркость	13
3.2.3 Включение питания	
3.2.4 Звуковой сигнал	14
3.2.5 Источник триггера	14
3.2.6 Тон PASS	14

3.2.7 Тон FAIL	15
4 Компаратор	15
4.1 Настройка параметров компаратора	15
4.1.1 Номинальное значение	15
4.1.2 Переключатель компаратора	15
4.1.3 Допуск	15
4.2 Механизм сортировки	16
5 Сканирование списка	18
5.1 Настройка параметров и работа	18

1 Краткое руководство

1.1 Передняя панель

Таблица - Элементы передней панели

Номер	Описание		
1	Выключатель питания		
2	3,5-дюймовый ЖК-дисплей		
3	Клеммы заземления и тестовые клеммы		
4	Основные функциональные клавиши		

1.2 Задняя панель

Таблица - Элементы задней панели

	Номер	Описание
	1	Разъем питания и держатель предохранителя
	2	Селектор напряжения
	3	Интерфейс RS232
	4	Интерфейс USB Device
All		4
Victor		Инструкция по
C :		

CALLE

1.3 Клавиши

1 Выключатель питания

Чтобы включить прибор, нажмите клавишу питания вниз. Для выключения — отпустите её (клавиша вернётся в исходное положение).

2 Клавиши направления

Для навигации по меню используйте клавиши со стрелками:

- \leftarrow \rightarrow (влево/вправо) для перемещения между пунктами меню
- ↑ ↓ (вверх/вниз) для изменения значений параметров

1.4 Основные операции

- 1. Установите селектор напряжения в положение, соответствующее вашей сети питания. Пример: для сети 220В переменного тока установите селектор в положение 220В.
 - 2. Подключите кабель питания к прибору и к сети.
 - 3. Подключите измерительные зажимы Кельвина (4-проводное подключение):
 - Контакты Hcur и Hpot соедините с красным зажимом
 - Контакты Lpot и Lcur соедините с чёрным зажимом
 - 4. Нажмите выключатель питания загорится ЖК-дисплей на передней панели.
- 5. После включения по умолчанию откроется страница измерения LCR (рис. 1) Индикация «—OL—» означает, что измеряемый параметр выходит за пределы диапазона (нет подключённого компонента).
- 6. Подключите измеряемый компонент к зажимам Кельвина и начните измерение. Пример: для теста подключите резистор номиналом около 1 кОм как показано на рис 2.

Рис. 1

Рис. 2

1.5 Страница LCR

1. Заголовок страницы

Показывает текущий режим работы прибора. Доступно 6 страниц: LCR, DCR, ECA, COM SET, SYSTEM SET, LIST SCAN. Страницы измерения — это LCR, DCR и ECA.

2. Условия и параметры измерения

Здесь отображаются текущие настройки: частота, уровень сигнала, смещение и другие параметры.

3. Отображение результатов измерения

Основной параметр (например, Rp) — показывает главное измеряемое значение. Rp означает сопротивление в параллельной эквивалентной модели, результат 999,4 Ом Вторичный параметр (например, X) — дополнительная характеристика.

Х означает реактивное сопротивление, результат 0,0567 Ом

4. Строка сообщений

В правой части отображается режим управления: LOCAL (локальный) или REMOTE (удалённый).

- LOCAL управление с клавиатуры прибора (режим по умолчанию)
- о REMOTE управление через компьютер по SCPI командам (клавиатура заблокирована)

2 Работа с основными функциями

2.1 Условия и параметры измерения

2.1.1 Функция

Рис. 4

Ср-D отображается в FUNC. Первый символ "С" - основной параметр, представляет измерение емкости; второй символ "р" представляет параллельную эквивалентную модель; последний символ "D" - вторичный параметр, представляет фактор потерь.

1 Основной параметр

Основные параметры включают AUTO, L (индуктивность), C (ёмкость), R (сопротивление) и Z (импеданс).

В режиме AUTO прибор сам определяет тип измеряемого компонента — индуктивность (L), ёмкость (C) или сопротивление (R) — и автоматически выбирает подходящий режим измерения. При этом вторичный параметр фиксирован: R-X для резисторов, C-D для конденсаторов и L-Q для катушек индуктивности. Эквивалентная модель также переключается автоматически.

Для переключения основного параметра: в режиме измерения нажимайте клавишу AUTO/R /C/L/Z — параметры переключаются циклически.

2 Эквивалентная модель

Эквивалентные модели: s (последовательная) и р (параллельная).

Реальные электронные компоненты не идеальны — они имеют паразитные параметры. Для точного измерения прибор представляет компонент как комбинацию двух элементов в последовательном или параллельном соединении.

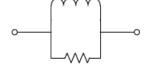
Схемы эквивалентных моделей:

Ёмкость (С):

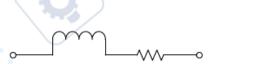
Последовательная схема

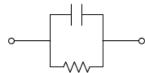
ема

Параллельная схема


Индуктивность (L):

Последовательная схема


Параллельная схема



Сопротивление (R): Последовательная схема

Параллельная схема

Рекомендация:

Последовательную модель (s) используйте для компонентов с малым импедансом, параллельную модель (p) — для компонентов с большим импедансом

Для переключения модели: нажмите клавишу

3 Вторичный параметр

Дополнительные измеряемые характеристики:

- X реактивное сопротивление
- D тангенс угла потерь (фактор потерь)
- Q добротность (фактор качества)
- θ фазовый угол импеданса
- ESR эквивалентное последовательное сопротивление (важно для конденсаторов)

Для переключения: нажимайте клавишу

параметры меняются циклически.

2.1.2 Уровень

Установка амплитуды тестового сигнала — два способа:

Способ 1: На странице LCR клавишами $\leftarrow \rightarrow$ переведите курсор на параметр LEVEL, затем клавишами $\uparrow \downarrow$ выберите нужный уровень: 100 мВ, 300 мВ, 600 мВ, 1 В, 1,5 В, 2 В (переключение циклическое).

Способ 2: Быстрое переключение — просто нажимайте клавишу **к** следующему значению.

для перехода

2.1.3 Постоянное смещение (BIAS)

Настройка постоянной составляющей тестового сигнала (для измерения компонентов при определённом смещении).

Клавишами \leftarrow \rightarrow переведите курсор на параметр BIAS, нажмите для входа в режим редактирования (рис. 5)

Рис. 5

Рис.6

В поле BIAS отображается текущее значение смещения в милливольтах (например, 1000 мВ = 1 В).

- Клавишами \leftarrow \rightarrow выберите разряд для изменения (выбранная цифра подсвечивается инверсно)
 - Клавишами $\uparrow \downarrow$ измените значение (\uparrow увеличивает на 1, \downarrow уменьшает на 1)
 - Нажмите для сохранения и выхода

2.1.4 Частота

Установка частоты тестового сигнала — два способа:

Способ 1: На странице измерения клавишами $\leftarrow \rightarrow$ переведите курсор на параметр FREQ, затем клавишами $\uparrow \downarrow$ выберите нужную частоту. Доступные фиксированные частоты:

100 Гц, 120 Гц, 200 Гц, 400 Гц, 800 Гц, 1 кГц, 2 кГц, 4 кГц, 8 кГц, 10 кГц, 15 кГц, 20 кГц, 40 кГц, 50 кГц, 80 кГц, 100 кГц (переключение циклическое). (рис 6)

Способ 2: Быстрое переключение — нажимайте клавишу для перехода к следующей частоте.

2.1.5 Диапазон

Режим автоматического или ручного выбора диапазона измерения:

- АUTO прибор сам выбирает оптимальный диапазон для текущего измерения
- LOCK диапазон зафиксирован на текущем значении

Рекомендация: Для обычных измерений используйте AUTO. Режим LOCK полезен при серийных измерениях однотипных компонентов на производстве — это экономит время на переключении диапазонов.

Как использовать LOCK: Сначала измерьте один образец в режиме AUTO, затем переключитесь на LOCK — прибор зафиксирует найденный оптимальный диапазон для всей партии.

Способ 1: Клавишами \leftarrow \rightarrow переведите курсор на RANGE, затем клавишами \uparrow \downarrow переключите между LOCK и AUTO.

Способ 2: Быстрое переключение — нажмите клавишу RANGE.

2.1.6 Выходное сопротивление

Выходное сопротивление - это выходное сопротивление источника возбуждения, прибор предоставляет два варианта: 30 Ом и 100 Ом. По умолчанию выходное сопротивление составляет 100 Ом.

Когда выходное сопротивление установлено на 30 Ом и измеряемое сопротивление мало, может возникнуть перегрузка по току. В этом случае в позиции основного параметра отображается "--OC--".

На странице измерения переместите курсор на элемент ROUT с помощью клавиш влево и вправо, затем переключите выходное сопротивление клавишами вверх и вниз (30 Ом, 100 Ом).

Рис. 7

Рис. 8

2.1.7 Скорость

Есть два способа установки скорости измерения:

Способ первый: На странице измерения переместите курсор на элемент SPEED с помощью клавиш влево и вправо, затем переключитесь на следующую точку скорости нажатием клавиш вверх и вниз (FAST, MED, SLOW), циклическое переключение.

Способ второй: На странице измерения нажмите клавишу для переключения на следующую точку скорости, циклическое переключение.

2.2 Режим DCR (сопротивление постоянному току)

Нажмите клавишу для активации режима измерения сопротивления постоянному току. Повторное нажатие — выход из режима.

В режиме DCR недоступны настройки уровня, смещения и частоты (они не нужны для постоянного тока).

Применение: Измерение активного сопротивления обмоток трансформаторов, катушек индуктивности, дросселей и других индуктивных компонентов.

Рис. 8

Рис. 9

2.3 Режим электролитического конденсатора

Нажмите клавишу для активации специального режима измерения электролитических конденсаторов. Повторное нажатие — выход из режима.

В режиме ЕСА недоступны настройки уровня и смещения (используются оптимальные значения для электролитов).

Красный зажим \rightarrow к положительному выводу конденсатора (+)

Чёрный зажим → к отрицательному выводу (–)

2.4 Функция ∆

На странице измерения нажмите клавишу для включения/выключения функции Δ.

Когда функция Δ включена, прибор записывает основной параметр измеренного значения на момент включения как эталонное значение и отображает его в позиции

вторичного параметра. В позиции основного параметра отображается разница между текущим измеренным значением и эталонным значением.

2.5 Функция удержания данных

Нажмите клавишу для включения функции удержания данных (рис. 10), в правом верхнем углу страницы отображается красная надпись "HOLD" и мигает, данные

страницы остаются неизменными. Нажмите клавишу снова

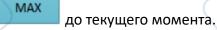
снова для выключения

функции удержания данных.

Рис. 10

Рис. 11

2.6 Функция записи данных


Нажмите клавишу , чтобы отобразить максимальное значение; нажмите снова, чтобы отменить отображение.

Нажмите клавишу , чтобы отобразить минимальное значение; нажмите снова, чтобы отменить отображение.

Нажмите клавишу , чтобы отобразить среднее значение; нажмите снова, чтобы отменить отображение.

В третьем столбце строки сообщений отображаются метки МАХ (максимум), MIN (минимум), AVG (среднее) и единицы измерения данных, а в четвёртом — соответствующие значения.

На рисунке показано, что максимальное значение равно 1.5818 pF — это наибольшее значение основного параметра среди всех измеренных данных с момента нажатия клавиши

2.7 Калибровка

Калибровка разомкнутой и короткозамкнутой цепи используется для устранения ошибки измерения, вносимой распределенными параметрами прибора и приспособления. Калибровка разомкнутой цепи обычно выполняется перед измерениями большого импеданса, а калибровка короткозамкнутой цепи - перед измерениями малого импеданса. Если будут

выполняться точные измерения, рекомендуется выполнить калибровку разомкнутой и короткозамкнутой цепи перед измерением.

2.7.1 Калибровка разомкнутой цепи

Для компенсации паразитной ёмкости измерительных проводов и приспособлений:

- 1. Разомкните измерительные зажимы (ничего не подключайте между красным и чёрным зажимами)
- 2. Убедитесь, что зажимы находятся на расстоянии не менее 10 см от рук оператора, металлических предметов, источников электромагнитных помех.
 - 3. Нажмите клавишу для запуска калибровки (рис 4-10)
 - 4. На дисплее появится счётчик, отсчитывающий от 20 до 0
- 5. По завершении прозвучит звуковой сигнал прибор автоматически вернётся в режим измерения

FUNC: Cp-D
FREQ: 1kHz
RANGE: AUTO
SPEED: SLOW

CAL:

SHORT

LOCAL

Рис. 12

Рис. 13

2.7.2 Калибровка короткозамкнутой цепи

Для компенсации остаточного сопротивления измерительных проводов:

- 1. Замкните измерительные зажимы между собой (соедините красный и чёрный зажимы напрямую)
 - 2. Нажмите клавишу прибор автоматически определит тип калибровки Если зажимы не замкнуты правильно прозвучат два коротких сигнала ошибки
 - 3. На дисплее появится счётчик, отсчитывающий от 20 до 0 (Рис. 4-11)
- 4. По завершении прозвучит звуковой сигнал прибор вернётся в режим измерения

Когда выполнять: Перед измерением компонентов с малым импедансом.

3 Системные настройки

3.1 Страница SYSTEM SET

На странице измерения нажмите клавишу для входа на страницу SYSTEM SET. Страница SYSTEM SET имеет две страницы (Рис. 5-1 и 5-2). Клавиши влево и вправо могут

перемещать курсор и переключать страницы. Нажмите SYSTEM SET.

снова для выхода со страницы

Рис. 14

3.2 Системные параметры

Таблица - Опции системных параметров

Элементы	Опции
Язык	中文/English
Яркость	30%, 50%, 70%, 100%
Включение питания	Настройки по умолчанию, Последние настройки
Звуковой сигнал	вкл / выкл
Источник триггера	INT, MAN, EXT
TOH PASS	Длинный, Короткий, Выкл
TOH FAIL	Длинный, Короткий, Выкл

3.2.1 Язык

Переместите курсор на элемент "Language" клавишами влево и вправо, и выберите язык (English, 中文) клавишами вверх и вниз.

3.2.2 Яркость

Переместите курсор на элемент "Brightness" клавишами влево и вправо, и выберите яркость подсветки (30%, 50%, 70%, 100%) клавишами вверх и вниз. Циклическое переключение.

3.2.3 Включение питания

Переместите курсор на элемент "Power on" клавишами влево и вправо, и выберите режим включения питания (Default set - по умолчанию, Last set - последние настройки) клавишами вверх и вниз.

Когда включение питания установлено на Last value, функция, уровень, частота, смещение, диапазон, выходное сопротивление и скорость измерения на странице измерения будут такими же, как при выключении питания. Если "Power on" установлено на Default set, эти параметры возвращаются к значениям по умолчанию.

3.2.4 Звуковой сигнал

Переместите курсор на элемент "Веер" клавишами влево и вправо, и переключите звуковой сигнал (OFF, ON) клавишами вверх и вниз.

При включении звукового сигнала звучит сигнал при нажатии клавиши (короткий звук), при выключении звукового сигнала нет сигнала при нажатии клавиши. Этот параметр в основном управляет звуковым сигналом клавиш и не влияет на звуковые сигналы уведомлений и предупреждений.

3.2.5 Источник триггера

Клавишами \leftarrow \rightarrow переведите курсор на пункт "TRIG source", затем клавишами $\uparrow \downarrow$ выберите источник триггера:

INT (Internal) — внутренний триггер. Сигнал запуска формируется внутри прибора, измерения выполняются автоматически.

MAN (Manual) — ручной триггер. Для каждого измерения нажимайте клавишу "TOL%" на передней панели.

EXT (External) — внешний триггер. Сигнал запуска подается через интерфейс Handler (для работы в составе автоматизированных систем).

При выборе MAN или EXT выйдите из режима SYSTEM SET и вернитесь на страницу измерений. В первой колонке строки состояния появится индикатор выбранного режима триггера. При ручном запуске (MAN) каждое нажатие клавиши "TOL%" формирует триггерный сигнал и обновляет результат измерения. До обновления данных на экране отображается предыдущее значение или пустое поле.

Рис. 16

3.2.6 Ton PASS

Переместите курсор на элемент "PASS tone" клавишами влево и вправо, затем переключите стиль тона PASS (Long - длинный, Short - короткий, Off - выкл) клавишами вверх и вниз. Циклическое переключение. Каждый триггерный сигнал с одним звуковым сигналом, длинный стиль 80 мс, короткий 20 мс.

3.2.7 Toh FAIL

Переместите курсор на элемент "FAIL tone" клавишами влево и вправо, затем переключите стиль тона FAIL (Long - длинный, Short - короткий, Off - выкл) клавишами вверх и вниз. Циклическое переключение. Каждый триггерный сигнал с одним звуковым сигналом, длинный стиль 80 мс, короткий 20 мс.

4 Компаратор

Функция компаратора используется для автоматической проверки и сортировки компонентов при входном контроле или на производственной линии. При подключении к интерфейсу Handler (разъём для внешней системы автоматической сортировки) прибор может работать в составе автоматизированного измерительного комплекса.

4.1 Настройка параметров компаратора

4.1.1 Номинальное значение

Шаг 1: На странице измерения поместите эталонную деталь на тестовый зажим прибора для измерения.

Шаг 2: Нажмите клавишу для входа на страницу СОМ SET, позиция курсора по умолчанию находится на элементе "Nom", номинальное значение получается путем взятия 4 значащих цифр значения эталонной детали.

Если номинальное значение нуждается в корректировке, переместите курсор на элемент "Nom" клавишами влево и вправо и нажмите клавишу для входа в состояние ввода. Выберите числовую цифру для изменения клавишами влево и вправо, выбранная цифра будет отображаться инверсно. Измените значение цифры клавишами вверх и вниз

(клавиша вверх +1, клавиша вниз -1). Нажмите клавишу для выхода после настройки. **Примечание:** Каждый раз при входе на страницу COM SET номинальное значение будет обновляться в соответствии с текущим измеренным значением.

4.1.2 Переключатель компаратора

Способ первый: На странице COM SET переместите курсор на элемент "Comp" клавишами влево и вправо, затем включите/выключите компаратор клавишами вверх и вниз.

Способ второй: На странице измерения переместите курсор на элемент "Comp" клавишами влево и вправо, затем включите/выключите компаратор клавишами вверх и вниз.

4.1.3 Допуск

Способ первый: Используйте клавиши влево и вправо для перемещения курсора на нижние и верхние пределы установленного ряда классификации (1, 2, 3, 2nd), нажмите клавиши вверх и вниз для выбора следующей точки допуска (-50%, -25%, -10%, 0%, 10%, 25%, 50%). Циклическое переключение.

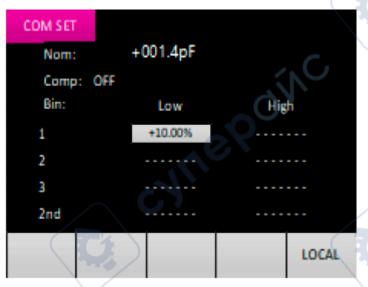


Рис. 17

Способ второй: Используйте клавиши влево и вправо для перемещения курсора на

нижние и верхние пределы установленного ряда классификации (1, 2, 3, 2nd), нажмите для входа в состояние ввода (диапазон настройки: -99.99%~+99.99%, разрешение: 0.01%) Метод настройки может ссылаться на настройку состояния ввода смещения.

Примечание: Нажмите клавишу для сохранения текущей настройки, и настройка после выключения питания не теряется.

4.2 Механизм сортировки

Машина предоставляет пять уровней (BIN:1, BIN:2, BIN:3, BIN:AUX, BIN:OUT) для сортировки. Р - основной параметр результата измерения, Pn_L - нижний предел основного параметра уровня n (n=1,2,3), Pn_H - верхний предел основного параметра уровня n (n=1,2,3), 2nd - результат измерения вторичного параметра, 2nd_L - нижний предел вторичного параметра, и 2nd H - верхний предел вторичного параметра.

- Когда основной параметр результатов измерения соответствует первому уровню и вторичный параметр проходит, результат сортировки BIN:1.
- Когда результаты измерения показывают, что основной параметр не соответствует первому уровню, но второму уровню, и вторичный параметр проходит, результаты сортировки BIN:2.
- Когда измеренные результаты показывают, что основные параметры не соответствуют первому и второму уровням, но соответствуют третьему уровню, и вторичные параметры проходят, результаты сортировки BIN:3.
- Когда основные параметры результатов измерения не соответствуют первому, второму и третьему уровням, результаты сортировки BIN:OUT.
- Когда основные параметры измеренных результатов соответствуют первому, второму или третьему уровням, а вторичные параметры не проходят, результат сортировки BIN:AUX.

Когда компаратор открыт, результаты сортировки отображаются на странице измерения. В то же время результаты сортировки выводятся через интерфейс Handler.

SYME

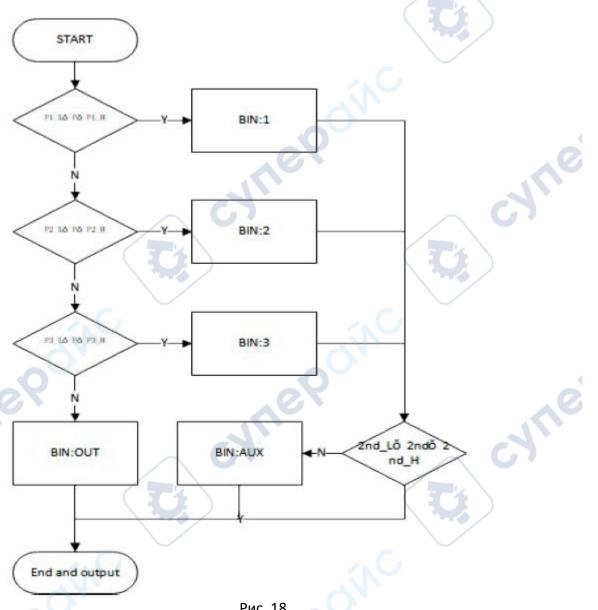


Рис. 18

Рис. 19

Если результат сортировки BIN:1, BIN:2, BIN:3, BIN:AUX, звуковое предупреждение будет выдаваться в соответствии с настройкой тона PASS в системных настройках. Если результат сортировки BIN:OUT, звуковое предупреждение будет выдаваться в соответствии с настройкой тона FAIL в системных настройках.

5 Сканирование списка

Функция сканирования списка в основном используется для тестирования одной и той же детали на разных частотах.

5.1 Настройка параметров и работа

Шаг 1: Вход на страницу LIST SCAN.

На странице LCR переместите курсор на элемент LIST клавишами влево и вправо. Нажмите клавиши вверх и вниз для входа на страницу LIST SCAN.

Примечание: Когда элемент FUNC находится в AUTO, страница LIST SCAN не может быть открыта.

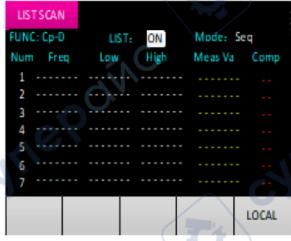


Рис. 20 Рис. 21

Шаг 2: Установка режима сканирования.

На странице LIST SCAN переместите курсор на элемент "Mode" клавишами влево и вправо и переключайте режимы клавишами вверх и вниз.

Доступно два режима: Seg и Step.

- При настройке Seq каждый стартовый сигнал автоматически выполнит все измерения и сравнения последовательных номеров 1-7.
- При настройке Step каждый стартовый сигнал завершает измерение и сравнение текущего последовательного номера. Текущий последовательный номер увеличивается на 1 (если текущий последовательный номер 7, последовательный номер становится 1).

Шаг 3: Установка параметров.

Параметры, которые могут быть установлены для каждого последовательного номера, включают частоту, верхний предел и нижний предел.

Настройка нижних и верхних пределов: Переместите курсор на поле верхнего или

нижнего предела для настройки и нажмите клавишу для входа в состояние ввода. Выберите числовую цифру для изменения клавишами влево и вправо, выбранная цифра будет отображаться инверсно. Измените значение цифры клавишами вверх и вниз (клавиша вверх

увеличивает значение на 1, клавиша вниз уменьшает значение на 1). Нажмите клавишу для выхода после настройки.

В состоянии без ввода нажмите клавишу вверх и вниз для отключения поля и отображения как "-----".

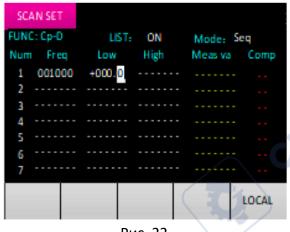


Рис. 22

Настройка частоты согласуется с настройкой частоты страницы измерения. В состоянии без ввода к опциям частоты добавляется опция отключения и отображается как "------".

Шаг 4: Запуск сканирования.

Может быть запущено внешней сигнальной линией (триггерный сигнал Handler) или нажатием клавиши TOL%. В этом случае используется внутренний источник триггера (INT), независимо от настройки источника триггера на странице SYSTEM SET.

После каждого измерения и сравнения измеренное значение и результат сравнения отображаются справа от ряда текущего последовательного номера.

- Результат сравнения I измеренное значение находится в пределах нижнего и верхнего пределов.
 - Результат сравнения Н измеренное значение выше верхнего предела.
 - Результат сравнения L измеренное значение ниже нижнего предела.

Примечание: Когда поле частоты установлено на опцию отключения, текущий последовательный номер будет пропущен напрямую. Если и верхний, и нижний пределы находятся в отключенном состоянии, результата сравнения нет, отображается как "--".

Шаг 5: Вывод результата сканирования в интерфейс Handler.

Результаты сканирования списка могут выводиться через Handler. Результаты сравнения последовательных номеров 1, 2, 3 и 7 могут быть напрямую выведены через Handler. В то же время общие результаты сканирования последовательных номеров 1-7 также могут быть выведены через Handler. В этом случае, пока в последовательных номерах 1-7 появляются результаты сравнения Н и L, это будет оценено как общий брак. Очистка всех результатов сканирования при каждом запуске измерения последовательного номера 1.

Результат сканирования списка также может давать звуковое предупреждение, результат сравнения I, и звуковое предупреждение основано на настройке тона PASS; результат сравнения H, L, звуковое предупреждение основано на настройке тона FAIL. Общие результаты сканирования выдаются в режиме Seq, а результаты сравнения текущих последовательных номеров выдаются в режиме Step.

Шаг 6: Выход со страницы LIST SCAN.

На странице LIST SCAN переместите курсор на элемент "LIST" клавишами влево и вправо и выйдите со страницы LIST SCAN клавишами вверх и вниз.